IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v149y2021ics1364032121006572.html
   My bibliography  Save this article

Recent trends in biochar integration with anaerobic fermentation: Win-win strategies in a closed-loop

Author

Listed:
  • Kumar, A. Naresh
  • Dissanayake, Pavani Dulanja
  • Masek, Ondrej
  • Priya, Anshu
  • Ki Lin, Carol Sze
  • Ok, Yong Sik
  • Kim, Sang-Hyoun

Abstract

Anaerobic fermentation (AF) is a widely used process for the transformation of organic waste into biogas. However, despite its ubiquitous use, it has several limiting factors, including low yield, redox imbalance, high concentration of inhibitors, and a long retention time. Integration of pyrolysis with AF improves efficiency and facilitates effective biomass utilization in a closed-loop approach. Research trends emphasize the inclusion of biochar derived from biomass to improve the stability and efficiency of AF and facilitate biogas up-gradation (H2S removal). However, there is a lack of consolidated scientific understanding regarding the complex interactions of biochar and AF microbial communities, in addition to its potential amendment advantages. Therefore, this review summarizes biomass utilization for biochar production using various pyrolysis methods and its use as an effective inclusion material to improve AF performance. Specifically, the influence of biochar amendments in AF is discussed in terms of microbial colonization, direct interspecies electron transfer, minimization of organic load, and buffering maintenance. Moreover, the role of AF digestate biochar in nutrient recycling and utilization as a soil conditioner is elaborated. The progressive integration of pyrolysis and AF offers the complete decoupling of biomass, enhances AF performance, and promotes the establishment of a sustainable bioprocess by inducing the circular bioeconomy.

Suggested Citation

  • Kumar, A. Naresh & Dissanayake, Pavani Dulanja & Masek, Ondrej & Priya, Anshu & Ki Lin, Carol Sze & Ok, Yong Sik & Kim, Sang-Hyoun, 2021. "Recent trends in biochar integration with anaerobic fermentation: Win-win strategies in a closed-loop," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
  • Handle: RePEc:eee:rensus:v:149:y:2021:i:c:s1364032121006572
    DOI: 10.1016/j.rser.2021.111371
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121006572
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111371?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Kumar, Sumit & Quan, Wang & Duan, Yumin & Awasthi, Sanjeev Kumar & Chen, Hongyu & Pandey, Ashok & Zhang, Zengqiang , 2019. "A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 115-131.
    2. Marta Dudek & Kacper Świechowski & Piotr Manczarski & Jacek A. Koziel & Andrzej Białowiec, 2019. "The Effect of Biochar Addition on the Biogas Production Kinetics from the Anaerobic Digestion of Brewers’ Spent Grain," Energies, MDPI, vol. 12(8), pages 1-22, April.
    3. Doddapaneni, Tharaka Rama Krishna C. & Praveenkumar, Ramasamy & Tolvanen, Henrik & Rintala, Jukka & Konttinen, Jukka, 2018. "Techno-economic evaluation of integrating torrefaction with anaerobic digestion," Applied Energy, Elsevier, vol. 213(C), pages 272-284.
    4. Song, Bing & Lin, Richen & Lam, Chun Ho & Wu, Hao & Tsui, To-Hung & Yu, Yun, 2021. "Recent advances and challenges of inter-disciplinary biomass valorization by integrating hydrothermal and biological techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Arif, Sania & Liaquat, Rabia & Adil, Manal, 2018. "Applications of materials as additives in anaerobic digestion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 354-366.
    6. Shen, Yanwen & Linville, Jessica L. & Urgun-Demirtas, Meltem & Schoene, Robin P. & Snyder, Seth W., 2015. "Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover biochar with in-situ CO2 removal," Applied Energy, Elsevier, vol. 158(C), pages 300-309.
    7. Brassard, P. & Godbout, S. & Hamelin, L., 2021. "Framework for consequential life cycle assessment of pyrolysis biorefineries: A case study for the conversion of primary forestry residues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Dissanayake, Pavani Dulanja & You, Siming & Igalavithana, Avanthi Deshani & Xia, Yinfeng & Bhatnagar, Amit & Gupta, Souradeep & Kua, Harn Wei & Kim, Sumin & Kwon, Jung-Hwan & Tsang, Daniel C.W. & Ok, , 2020. "Biochar-based adsorbents for carbon dioxide capture: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
    10. Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    11. Usmani, Zeba & Sharma, Minaxi & Karpichev, Yevgen & Pandey, Ashok & Chander Kuhad, Ramesh & Bhat, Rajeev & Punia, Rajesh & Aghbashlo, Mortaza & Tabatabaei, Meisam & Gupta, Vijai Kumar, 2020. "Advancement in valorization technologies to improve utilization of bio-based waste in bioeconomy context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    13. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2019. "A review of biochar properties and their roles in mitigating challenges with anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 291-307.
    14. Qiu, L. & Deng, Y.F. & Wang, F. & Davaritouchaee, M. & Yao, Y.Q., 2019. "A review on biochar-mediated anaerobic digestion with enhanced methane recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    15. Anindita Bandyopadhyay & Jana Stöckel & Hongtao Min & Louis A. Sherman & Himadri B. Pakrasi, 2010. "High rates of photobiological H2 production by a cyanobacterium under aerobic conditions," Nature Communications, Nature, vol. 1(1), pages 1-7, December.
    16. Khoshnevisan, Benyamin & Duan, Na & Tsapekos, Panagiotis & Awasthi, Mukesh Kumar & Liu, Zhidan & Mohammadi, Ali & Angelidaki, Irini & Tsang, Daniel CW. & Zhang, Zengqiang & Pan, Junting & Ma, Lin & Ag, 2021. "A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Deng, Chen & Lin, Richen & Kang, Xihui & Wu, Benteng & O’Shea, Richard & Murphy, Jerry D., 2020. "Improving gaseous biofuel yield from seaweed through a cascading circular bioenergy system integrating anaerobic digestion and pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    18. Garlapati, Vijay Kumar & Chandel, Anuj K. & Kumar, S.P. Jeevan & Sharma, Swati & Sevda, Surajbhan & Ingle, Avinash P. & Pant, Deepak, 2020. "Circular economy aspects of lignin: Towards a lignocellulose biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    19. Dominic Woolf & James E. Amonette & F. Alayne Street-Perrott & Johannes Lehmann & Stephen Joseph, 2010. "Sustainable biochar to mitigate global climate change," Nature Communications, Nature, vol. 1(1), pages 1-9, December.
    20. Song, Jinghui & Wang, Ying & Zhang, Siqi & Song, Yanling & Xue, Shengrong & Liu, Le & Lvy, Xingang & Wang, Xiaojiao & Yang, Gaihe, 2021. "Coupling biochar with anaerobic digestion in a circular economy perspective: A promising way to promote sustainable energy, environment and agriculture development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    21. Duku, Moses Hensley & Gu, Sai & Hagan, Essel Ben, 2011. "Biochar production potential in Ghana—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3539-3551.
    22. Qian, Kezhen & Kumar, Ajay & Zhang, Hailin & Bellmer, Danielle & Huhnke, Raymond, 2015. "Recent advances in utilization of biochar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1055-1064.
    23. Dissanayake, Pavani Dulanja & Choi, Seung Wan & Igalavithana, Avanthi Deshani & Yang, Xiao & Tsang, Daniel C.W. & Wang, Chi-Hwa & Kua, Harn Wei & Lee, Ki Bong & Ok, Yong Sik, 2020. "Sustainable gasification biochar as a high efficiency adsorbent for CO2 capture: A facile method to designer biochar fabrication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    24. Qambrani, Naveed Ahmed & Rahman, Md. Mukhlesur & Won, Seunggun & Shim, Soomin & Ra, Changsix, 2017. "Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 255-273.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iliana Dompara & Angeliki Maragkaki & Nikolaos Papastefanakis & Christina Floraki & Dimitra Vernardou & Thrassyvoulos Manios, 2023. "Effects of Different Materials on Biogas Production during Anaerobic Digestion of Food Waste," Sustainability, MDPI, vol. 15(7), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Tayibi, S. & Monlau, F. & Bargaz, A. & Jimenez, R. & Barakat, A., 2021. "Synergy of anaerobic digestion and pyrolysis processes for sustainable waste management: A critical review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Deng, Chen & Lin, Richen & Kang, Xihui & Wu, Benteng & Wall, David & Murphy, Jerry D., 2022. "Improvement in biohydrogen and volatile fatty acid production from seaweed through addition of conductive carbon materials depends on the properties of the conductive materials," Energy, Elsevier, vol. 239(PC).
    4. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2019. "A review of biochar properties and their roles in mitigating challenges with anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 291-307.
    5. Mosleh Uddin, Md & Wen, Zhiyou & Mba Wright, Mark, 2022. "Techno-economic and environmental impact assessment of using corn stover biochar for manure derived renewable natural gas production," Applied Energy, Elsevier, vol. 321(C).
    6. Malyan, Sandeep K. & Kumar, Smita S. & Fagodiya, Ram Kishor & Ghosh, Pooja & Kumar, Amit & Singh, Rajesh & Singh, Lakhveer, 2021. "Biochar for environmental sustainability in the energy-water-agroecosystem nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. Wu, Benteng & Lin, Richen & O'Shea, Richard & Deng, Chen & Rajendran, Karthik & Murphy, Jerry D., 2021. "Production of advanced fuels through integration of biological, thermo-chemical and power to gas technologies in a circular cascading bio-based system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Song, Jinghui & Wang, Ying & Zhang, Siqi & Song, Yanling & Xue, Shengrong & Liu, Le & Lvy, Xingang & Wang, Xiaojiao & Yang, Gaihe, 2021. "Coupling biochar with anaerobic digestion in a circular economy perspective: A promising way to promote sustainable energy, environment and agriculture development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    10. Abbas, Yasir & Yun, Sining & Wang, Ziqi & Zhang, Yongwei & Zhang, Xianmei & Wang, Kaijun, 2021. "Recent advances in bio-based carbon materials for anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Kung, Chih-Chun & Mu, Jianhong E., 2019. "Prospect of China's renewable energy development from pyrolysis and biochar applications under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    12. Pecchi, Matteo & Baratieri, Marco, 2019. "Coupling anaerobic digestion with gasification, pyrolysis or hydrothermal carbonization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 462-475.
    13. Salehiyoun, Ahmad Reza & Zilouei, Hamid & Safari, Mohammad & Di Maria, Francesco & Samadi, Seyed Hashem & Norouzi, Omid, 2022. "An investigation for improving dry anaerobic digestion of municipal solid wastes by adding biochar derived from gasification of wood pellets," Renewable Energy, Elsevier, vol. 186(C), pages 1-9.
    14. G. Venkatesh, 2022. "Circular Bio-economy—Paradigm for the Future: Systematic Review of Scientific Journal Publications from 2015 to 2021," Circular Economy and Sustainability,, Springer.
    15. Shukla, Parul & Giri, Balendu Shekhar & Mishra, Rakesh K. & Pandey, Ashok & Chaturvedi, Preeti, 2021. "Lignocellulosic biomass-based engineered biochar composites: A facile strategy for abatement of emerging pollutants and utilization in industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    16. Haleem, Noor & Khattak, Alishba & Jamal, Yousuf & Sajid, Masooma & Shahzad, Zainab & Raza, Hammad, 2022. "Development of poly vinyl alcohol (PVA) based biochar nanofibers for carbon dioxide (CO2) adsorption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    17. Song, Bing & Cao, Xuewen & Gao, Wenran & Aziz, Shazed & Gao, Shuai & Lam, Chun-Ho & Lin, Richen, 2022. "Preparation of nano-biochar from conventional biorefineries for high-value applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    18. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    19. Chen, Miao & Liu, Shujun & Yuan, Xufeng & Li, Qing X. & Wang, Fengzhong & Xin, Fengjiao & Wen, Boting, 2021. "Methane production and characteristics of the microbial community in the co-digestion of potato pulp waste and dairy manure amended with biochar," Renewable Energy, Elsevier, vol. 163(C), pages 357-367.
    20. Apoorva Upadhyay & Andrey A. Kovalev & Elena A. Zhuravleva & Dmitriy A. Kovalev & Yuriy V. Litti & Shyam Kumar Masakapalli & Nidhi Pareek & Vivekanand Vivekanand, 2022. "Recent Development in Physical, Chemical, Biological and Hybrid Biogas Upgradation Techniques," Sustainability, MDPI, vol. 15(1), pages 1-30, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:149:y:2021:i:c:s1364032121006572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.