IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v275y2020ics0306261920307571.html
   My bibliography  Save this article

Enabling low-carbon hydrogen supply chains through use of biomass and carbon capture and storage: A Swiss case study

Author

Listed:
  • Gabrielli, Paolo
  • Charbonnier, Flora
  • Guidolin, Annalisa
  • Mazzotti, Marco

Abstract

This study investigates the optimal design of low-carbon hydrogen supply chains on a national scale. We consider hydrogen production based on several feedstocks and energy sources, namely water with electricity, natural gas and biomass. When using natural gas, we couple hydrogen production with carbon capture and storage. The design of the hydrogen, biomass and carbon dioxide (CO2) infrastructure is performed by solving an optimization problem that determines the optimal selection, size and location of the hydrogen production technologies, and the optimal structure of the hydrogen, biomass and CO2 networks. First, we investigate the rationale behind the optimal design of low-carbon hydrogen supply chains by referring to an idealized system configuration and by performing a parametric analysis of the most relevant design parameters of the supply chains, such as biomass availability. This allows drawing general conclusions, independent of any specific geographic features, about the minimum-cost and minimum-emissions system designs and network structures. Moreover, we analyze the Swiss case study to derive specific guidelines concerning the design of hydrogen supply chains deploying carbon capture and storage. We assess the impact of relevant design parameters, such as location of CO2 storage facilities, techno-economic features of CO2 capture technologies, and network losses, on the optimal supply chain design and on the competition between the hydrogen and CO2 networks. Findings highlight the fundamental role of biomass (when available) and of carbon capture and storage for decarbonizing hydrogen supply chains while transitioning to a wider deployment of renewable energy sources.

Suggested Citation

  • Gabrielli, Paolo & Charbonnier, Flora & Guidolin, Annalisa & Mazzotti, Marco, 2020. "Enabling low-carbon hydrogen supply chains through use of biomass and carbon capture and storage: A Swiss case study," Applied Energy, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:appene:v:275:y:2020:i:c:s0306261920307571
    DOI: 10.1016/j.apenergy.2020.115245
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920307571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lo, Shirleen Lee Yuen & How, Bing Shen & Teng, Sin Yong & Lam, Hon Loong & Lim, Chun Hsion & Rhamdhani, Muhammad Akbar & Sunarso, Jaka, 2021. "Stochastic techno-economic evaluation model for biomass supply chain: A biomass gasification case study with supply chain uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Yoon, Ha-Jun & Seo, Seung-Kwon & Lee, Chul-Jin, 2022. "Multi-period optimization of hydrogen supply chain utilizing natural gas pipelines and byproduct hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Cantú, Victor H. & Ponsich, Antonin & Azzaro-Pantel, Catherine & Carrera, Eduardo, 2023. "Capturing spatial, time-wise and technological detail in hydrogen supply chains: A bi-level multi-objective optimization approach," Applied Energy, Elsevier, vol. 344(C).
    4. Peng, Wei & Xin, Baogui & Xie, Lei, 2023. "Optimal strategies for production plan and carbon emission reduction in a hydrogen supply chain under cap-and-trade policy," Renewable Energy, Elsevier, vol. 215(C).
    5. Damien Guilbert & Gianpaolo Vitale, 2021. "Hydrogen as a Clean and Sustainable Energy Vector for Global Transition from Fossil-Based to Zero-Carbon," Clean Technol., MDPI, vol. 3(4), pages 1-29, December.
    6. Jun-bin Wang & Lufei Huang, 2021. "A Game-Theoretic Analytical Approach for Fostering Energy-Saving Innovation in the Electric Vehicle Supply Chain," SAGE Open, , vol. 11(2), pages 21582440211, June.
    7. Sterkhov, K.V. & Khokhlov, D.A. & Zaichenko, M.N. & Pleshanov, K.A., 2021. "A zero carbon emission CCGT power plant and an existing steam power station modernization scheme," Energy, Elsevier, vol. 237(C).
    8. Davide Tonelli & Lorenzo Rosa & Paolo Gabrielli & Ken Caldeira & Alessandro Parente & Francesco Contino, 2023. "Global land and water limits to electrolytic hydrogen production using wind and solar resources," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Rosa, Lorenzo & Mazzotti, Marco, 2022. "Potential for hydrogen production from sustainable biomass with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    10. Bello, Sara & Galán-Martín, Ángel & Feijoo, Gumersindo & Moreira, Maria Teresa & Guillén-Gosálbez, Gonzalo, 2020. "BECCS based on bioethanol from wood residues: Potential towards a carbon-negative transport and side-effects," Applied Energy, Elsevier, vol. 279(C).
    11. Juan C. González Palencia & Yuta Itoi & Mikiya Araki, 2022. "Design of a Hydrogen Production System Considering Energy Consumption, Water Consumption, CO 2 Emissions and Cost," Energies, MDPI, vol. 15(21), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:275:y:2020:i:c:s0306261920307571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.