IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v240y2025ics0960148124022985.html
   My bibliography  Save this article

Large-scale hydrogen supply chain vision with blended pipeline transportation of China

Author

Listed:
  • Zhang, Xin
  • Fu, Guangtao
  • Liao, Qi
  • Tu, Renfu
  • Zhang, Haoran
  • Liang, Yongtu

Abstract

Hydrogen energy earns considerable development potential in today's era. Given that the energy system is in the transition stage, utilizing the existing natural gas pipeline network has both economic and safety advantages. This study presents an optimization model for the hydrogen supply chain (HSC), encompassing hydrogen production, transportation, and consumption. Taking China as an example, aiming at the divided 29 regions and simulates the HSC configurations under different scenarios. The results indicate that pipeline transportation has both economic and environmental advantages, but due to technical limitations, the transport scale of hydrogen in natural gas pipeline is really limited. As the hydrogen blending ratio decreases, the overall transportation cost of HSC will increase. In the future, the establishment of dedicated hydrogen pipelines may become a necessary option. At the same time, when the carbon price is lower than 70 $/ton, the policy will have a significant impact on the decarbonization of the transportation sector. When it is higher than 70 $/ton, low-carbon hydrogen produced through renewable energy or combined with carbon capture will gradually demonstrate market competitiveness. It is advisable for policymakers to set a strategic target for the market penetration of hydrogen cell electric vehicles at a level of 6.25 %.

Suggested Citation

  • Zhang, Xin & Fu, Guangtao & Liao, Qi & Tu, Renfu & Zhang, Haoran & Liang, Yongtu, 2025. "Large-scale hydrogen supply chain vision with blended pipeline transportation of China," Renewable Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022985
    DOI: 10.1016/j.renene.2024.122230
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124022985
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122230?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Imjung & Kim, Junghun & Lee, Jongsu, 2020. "Dynamic analysis of well-to-wheel electric and hydrogen vehicles greenhouse gas emissions: Focusing on consumer preferences and power mix changes in South Korea," Applied Energy, Elsevier, vol. 260(C).
    2. Seo, Seung-Kwon & Yun, Dong-Yeol & Lee, Chul-Jin, 2020. "Design and optimization of a hydrogen supply chain using a centralized storage model," Applied Energy, Elsevier, vol. 262(C).
    3. Timmerberg, Sebastian & Kaltschmitt, Martin, 2019. "Hydrogen from renewables: Supply from North Africa to Central Europe as blend in existing pipelines – Potentials and costs," Applied Energy, Elsevier, vol. 237(C), pages 795-809.
    4. Yuan, Meng & Zhang, Haoran & Wang, Bohong & Huang, Liqiao & Fang, Kai & Liang, Yongtu, 2020. "Downstream oil supply security in China: Policy implications from quantifying the impact of oil import disruption," Energy Policy, Elsevier, vol. 136(C).
    5. Guandalini, Giulio & Colbertaldo, Paolo & Campanari, Stefano, 2017. "Dynamic modeling of natural gas quality within transport pipelines in presence of hydrogen injections," Applied Energy, Elsevier, vol. 185(P2), pages 1712-1723.
    6. Zhu, Guangyan & Tian, Yajun & Liu, Min & Zhao, Yating & Wang, Wen & Wang, Minghua & Li, Quansheng & Xie, Kechang, 2023. "Comprehensive competitiveness assessment of ammonia-hydrogen fuel cell electric vehicles and their competitive routes," Energy, Elsevier, vol. 285(C).
    7. Gabrielli, Paolo & Charbonnier, Flora & Guidolin, Annalisa & Mazzotti, Marco, 2020. "Enabling low-carbon hydrogen supply chains through use of biomass and carbon capture and storage: A Swiss case study," Applied Energy, Elsevier, vol. 275(C).
    8. Tu, Renfu & Liu, Chunying & Shao, Qi & Liao, Qi & Qiu, Rui & Liang, Yongtu, 2024. "Pipeline sharing: Optimal design of downstream green ammonia supply systems integrating with multi-product pipelines," Renewable Energy, Elsevier, vol. 223(C).
    9. Quarton, Christopher J. & Samsatli, Sheila, 2020. "Should we inject hydrogen into gas grids? Practicalities and whole-system value chain optimisation," Applied Energy, Elsevier, vol. 275(C).
    10. Halder, Pobitra & Babaie, Meisam & Salek, Farhad & Shah, Kalpit & Stevanovic, Svetlana & Bodisco, Timothy A. & Zare, Ali, 2024. "Performance, emissions and economic analyses of hydrogen fuel cell vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    11. Jang, Jaeuk & Lee, Hyunsoo, 2024. "Effective hydrogen supply chain management framework considering nonlinear multi-stage process uncertainties," Applied Energy, Elsevier, vol. 367(C).
    12. Peng, Wei & Xin, Baogui & Xie, Lei, 2023. "Optimal strategies for production plan and carbon emission reduction in a hydrogen supply chain under cap-and-trade policy," Renewable Energy, Elsevier, vol. 215(C).
    13. Ren, Lei & Zhou, Sheng & Ou, Xunmin, 2020. "Life-cycle energy consumption and greenhouse-gas emissions of hydrogen supply chains for fuel-cell vehicles in China," Energy, Elsevier, vol. 209(C).
    14. Li, Yanfei & Kimura, Shigeru, 2021. "Economic competitiveness and environmental implications of hydrogen energy and fuel cell electric vehicles in ASEAN countries: The current and future scenarios," Energy Policy, Elsevier, vol. 148(PB).
    15. Yuan, Meng & Zhang, Haoran & Wang, Bohong & Zhang, Yang & Zhou, Xingyuan & Liang, Yongtu, 2020. "Future scenario of China's downstream oil reform: Improving the energy-environmental efficiency of the pipeline networks through interconnectivity," Energy Policy, Elsevier, vol. 140(C).
    16. Li, Jichao & Han, Wei & Song, Xinyang & Li, Peijing & Wang, Zefeng & Jin, Hongguang, 2024. "Near-zero carbon emission power generation system enabled by staged coal gasification and chemical recuperation," Energy, Elsevier, vol. 306(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierre, Cayet & Catherine, Azzaro-Pantel & Sylvain, Bourjade & Catherine, Muller-Vibes, 2024. "Beyond the “bottom-up” and “top-down” controversy: A methodological inquiry into hybrid modeling methods for hydrogen supply chains," International Journal of Production Economics, Elsevier, vol. 268(C).
    2. Jiwon Yu & Young Jae Han & Hyewon Yang & Sugil Lee & Gildong Kim & Chulung Lee, 2022. "Promising Technology Analysis and Patent Roadmap Development in the Hydrogen Supply Chain," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    3. Yang, Jie & Yu, Fan & Ma, Kai & Yang, Bo & Yue, Zhiyuan, 2024. "Optimal scheduling of electric-hydrogen integrated charging station for new energy vehicles," Renewable Energy, Elsevier, vol. 224(C).
    4. Damien Guilbert & Gianpaolo Vitale, 2021. "Hydrogen as a Clean and Sustainable Energy Vector for Global Transition from Fossil-Based to Zero-Carbon," Clean Technol., MDPI, vol. 3(4), pages 1-29, December.
    5. Yoon, Ha-Jun & Seo, Seung-Kwon & Lee, Chul-Jin, 2022. "Multi-period optimization of hydrogen supply chain utilizing natural gas pipelines and byproduct hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Halder, Pobitra & Babaie, Meisam & Salek, Farhad & Shah, Kalpit & Stevanovic, Svetlana & Bodisco, Timothy A. & Zare, Ali, 2024. "Performance, emissions and economic analyses of hydrogen fuel cell vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    7. Lifeng Du & Yanmei Yang & Luli Zhou & Min Liu, 2024. "Greenhouse Gas Reduction Potential and Economics of Green Hydrogen via Water Electrolysis: A Systematic Review of Value-Chain-Wide Decarbonization," Sustainability, MDPI, vol. 16(11), pages 1-37, May.
    8. Wang, Tiantian & Liu, Xuemin & Zhang, Yang & Zhang, Hai, 2024. "Thermodynamic and emission characteristics of a hydrogen-enriched natural gas-fired boiler integrated with external flue gas recirculation and waste heat recovery," Applied Energy, Elsevier, vol. 358(C).
    9. Wang, Guotao & Liao, Qi & Zhang, Haoran & Liang, Yongtu, 2022. "How government policies promote bioenergy’s permeability in national-level energy supply chain: A case of China," Applied Energy, Elsevier, vol. 324(C).
    10. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    11. Sun, Mengxiao & Huang, Xiaomei & Hu, Yelong & Lyu, Shan, 2022. "Effects on the performance of domestic gas appliances operated on natural gas mixed with hydrogen," Energy, Elsevier, vol. 244(PA).
    12. Bellocchi, Sara & Colbertaldo, Paolo & Manno, Michele & Nastasi, Benedetto, 2023. "Assessing the effectiveness of hydrogen pathways: A techno-economic optimisation within an integrated energy system," Energy, Elsevier, vol. 263(PE).
    13. Wu, Yunna & Liu, Fangtong & He, Jiaming & Wu, Man & Ke, Yiming, 2021. "Obstacle identification, analysis and solutions of hydrogen fuel cell vehicles for application in China under the carbon neutrality target," Energy Policy, Elsevier, vol. 159(C).
    14. Gong, Ke & Zheng, Wei & Shu, Yingting, 2024. "Battery leasing business for hydrogen fuel cell vehicles: Motorists' costs, adoption, and manufacturers’ profits," Energy, Elsevier, vol. 293(C).
    15. Yuan, Meng & Thellufsen, Jakob Zinck & Lund, Henrik & Liang, Yongtu, 2021. "The electrification of transportation in energy transition," Energy, Elsevier, vol. 236(C).
    16. Zhu, Min & Dong, Peiwu & Ju, Yanbing & Li, Jiajun & Ran, Lun, 2023. "Effects of government subsidies on heavy-duty hydrogen fuel cell truck penetration: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 183(C).
    17. Alexandros Kafetzis & Michael Bampaou & Giorgos Kardaras & Kyriakos Panopoulos, 2023. "Decarbonization of Former Lignite Regions with Renewable Hydrogen: The Western Macedonia Case," Energies, MDPI, vol. 16(20), pages 1-21, October.
    18. Danieli, Piero & Lazzaretto, Andrea & Al-Zaili, Jafar & Sayma, Abdulnaser & Masi, Massimo & Carraro, Gianluca, 2022. "The potential of the natural gas grid to accommodate hydrogen as an energy vector in transition towards a fully renewable energy system," Applied Energy, Elsevier, vol. 313(C).
    19. Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).
    20. Zhuang, Rui & Wang, Xiaonan & Guo, Miao & Zhao, Yingru & El-Farra, Nael H. & Palazoglu, Ahmet, 2020. "Waste-to-hydrogen: Recycling HCl to produce H2 and Cl2," Applied Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.