IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v60y2015i1p55-80.html
   My bibliography  Save this article

The Role of Carbon Capture and Sequestration Policies for Climate Change Mitigation

Author

Listed:
  • Matthias Kalkuhl
  • Ottmar Edenhofer
  • Kai Lessmann

Abstract

This paper takes the ‘policy failure’ in establishing a global carbon price for efficient emissions reduction as a starting point and analyzes to what extent technology policies can be a reasonable second-best approach. From a supply-side perspective, carbon capture and storage (CCS) policies differ substantially from renewable energy policies: they increase fossil resource demand and simultaneously lower emissions. We analyze CCS and renewable energy policies in a numerical dynamic general equilibrium model for settings of imperfect or missing carbon prices. We find that in contrast to renewable energy policies, CCS policies are not always capable of reducing emissions in the long run. If feasible, CCS policies can carry lower social costs compared to renewable energy policies, in particular when second-best policies are only employed temporally. In case fossil resources are abundant and renewable energy costs low, renewable energy policies perform better. Our results indicate that a pure CCS policy or a pure renewable energy policy carry their own specific risks of missing the environmental target. A smart combination of both, however, can be a robust and low-cost temporary second-best policy. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Matthias Kalkuhl & Ottmar Edenhofer & Kai Lessmann, 2015. "The Role of Carbon Capture and Sequestration Policies for Climate Change Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 60(1), pages 55-80, January.
  • Handle: RePEc:kap:enreec:v:60:y:2015:i:1:p:55-80
    DOI: 10.1007/s10640-013-9757-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10640-013-9757-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10640-013-9757-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2013. "Renewable energy subsidies: Second-best policy or fatal aberration for mitigation?," Resource and Energy Economics, Elsevier, vol. 35(3), pages 217-234.
    2. Don Fullerton, 2011. "Six Distributional Effects of Environmental Policy," Risk Analysis, John Wiley & Sons, vol. 31(6), pages 923-929, June.
    3. Reyer Gerlagh & Bob van der Zwaan, 2006. "Options and Instruments for a Deep Cut in CO2 Emissions: Carbon Dioxide Capture or Renewables, Taxes or Subsidies?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 25-48.
    4. Ayong Le Kama, Alain & Fodha, Mouez & Lafforgue, Gilles, 2009. "Optimal Carbon Capture and Storage Policies," TSE Working Papers 09-095, Toulouse School of Economics (TSE).
    5. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2012. "Learning or lock-in: Optimal technology policies to support mitigation," Resource and Energy Economics, Elsevier, vol. 34(1), pages 1-23.
    6. Matthias Kalkuhl & Ottmar Edenhofer & Kai Lessmann, 2015. "The Role of Carbon Capture and Sequestration Policies for Climate Change Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 60(1), pages 55-80, January.
    7. Parry, Ian W. H., 2004. "Are emissions permits regressive?," Journal of Environmental Economics and Management, Elsevier, vol. 47(2), pages 364-387, March.
    8. Reyer Gerlagh, 2011. "Too Much Oil," CESifo Economic Studies, CESifo Group, vol. 57(1), pages 79-102, March.
    9. Edenhofer, Ottmar & Bauer, Nico & Kriegler, Elmar, 2005. "The impact of technological change on climate protection and welfare: Insights from the model MIND," Ecological Economics, Elsevier, vol. 54(2-3), pages 277-292, August.
    10. Reyer Gerlagh & Bob van der Zwaan & Marjan Hofkes & Ger Klaassen, 2004. "Impacts of CO 2 -Taxes in an Economy with Niche Markets and Learning-by-Doing," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(3), pages 367-394, July.
    11. Hoel, Michael & Jensen, Svenn, 2012. "Cutting costs of catching carbon—Intertemporal effects under imperfect climate policy," Resource and Energy Economics, Elsevier, vol. 34(4), pages 680-695.
    12. Parry Ian W. H. & Williams Roberton C., 2010. "What are the Costs of Meeting Distributional Objectives for Climate Policy?," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 10(2), pages 1-35, December.
    13. Hans-Werner Sinn, 2008. "Public policies against global warming: a supply side approach," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 15(4), pages 360-394, August.
    14. Renaud Coulomb & Fanny Henriet, 2010. "Carbon price and optimal extraction of a polluting fossil fuel with restricted carbon capture," Working Papers halshs-00564852, HAL.
    15. Thomas Eichner & Rüdiger Pethig, 2011. "Carbon Leakage, The Green Paradox, And Perfect Future Markets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(3), pages 767-805, August.
    16. Grimaud, André & Lafforgue, Gilles & Magné, Bertrand, 2011. "Climate change mitigation options and directed technical change: A decentralized equilibrium analysis," Resource and Energy Economics, Elsevier, vol. 33(4), pages 938-962.
    17. Victor,David G., 2011. "Global Warming Gridlock," Cambridge Books, Cambridge University Press, number 9780521865012.
    18. Parry, Ian W.H. & Williams, Roberton C. III, 2010. "What Are the Costs of Meeting Distributional Objectives in Designing Domestic Climate Policy?," RFF Working Paper Series dp-10-51, Resources for the Future.
    19. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39, pages 137-137.
    20. Ottmar Edenhofer , Brigitte Knopf, Terry Barker, Lavinia Baumstark, Elie Bellevrat, Bertrand Chateau, Patrick Criqui, Morna Isaac, Alban Kitous, Socrates Kypreos, Marian Leimbach, Kai Lessmann, Bertra, 2010. "The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    21. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    22. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    23. Michael Hoel, 2010. "Is there a Green Paradox?," CESifo Working Paper Series 3168, CESifo.
    24. R. Quentin Grafton & Tom Kompas & Ngo Van Long, 2010. "Biofuels Subsidies and the Green Paradox," CESifo Working Paper Series 2960, CESifo.
    25. Mirrlees, J. A. & Stern, N. H., 1972. "Fairly good plans," Journal of Economic Theory, Elsevier, vol. 4(2), pages 268-288, April.
    26. Gunnar Luderer & Valentina Bosetti & Michael Jakob & Marian Leimbach & Jan Steckel & Henri Waisman & Ottmar Edenhofer, 2012. "The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison," Climatic Change, Springer, vol. 114(1), pages 9-37, September.
    27. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2010. "Optimal capture and sequestration from the carbon emission flow and from the atmospheric carbon stock with heterogeneous energy consuming sectors," TSE Working Papers 10-163, Toulouse School of Economics (TSE).
    28. Bob van der Zwaan & Reyer Gerlagh, 2008. "The Economics of Geological CO2 Storage and Leakage," Working Papers 2008.10, Fondazione Eni Enrico Mattei.
    29. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    30. Edenhofer, Ottmar & Kalkuhl, Matthias, 2011. "When do increasing carbon taxes accelerate global warming? A note on the green paradox," Energy Policy, Elsevier, vol. 39(4), pages 2208-2212, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthias Kalkuhl & Ottmar Edenhofer & Kai Lessmann, 2015. "The Role of Carbon Capture and Sequestration Policies for Climate Change Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 60(1), pages 55-80, January.
    2. Matthias Weitzel, 2017. "The role of uncertainty in future costs of key CO2 abatement technologies: a sensitivity analysis with a global computable general equilibrium model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 153-173, January.
    3. Durmaz, Tunç, 2018. "The economics of CCS: Why have CCS technologies not had an international breakthrough?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 328-340.
    4. Bertinelli, Luisito & Camacho, Carmen & Zou, Benteng, 2014. "Carbon capture and storage and transboundary pollution: A differential game approach," European Journal of Operational Research, Elsevier, vol. 237(2), pages 721-728.
    5. Tunç Durmaz & Fred Schroyen, 2020. "Evaluating Carbon Capture And Storage In A Climate Model With Endogenous Technical Change," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-47, February.
    6. Jagu Schippers, Emma & Massol, Olivier, 2022. "Unlocking CO2 infrastructure deployment: The impact of carbon removal accounting," Energy Policy, Elsevier, vol. 171(C).
    7. Grimaud, André & Rouge, Luc, 2014. "Carbon sequestration, economic policies and growth," Resource and Energy Economics, Elsevier, vol. 36(2), pages 307-331.
    8. Kai Lessmann & Matthias Kalkuhl, 2020. "Climate Finance Intermediation: Interest Spread Effects in a Climate Policy Model," CESifo Working Paper Series 8380, CESifo.
    9. Turner, Karen & Race, Julia & Alabi, Oluwafisayo & Katris, Antonios & Swales, J. Kim, 2021. "Policy options for funding carbon capture in regional industrial clusters: What are the impacts and trade-offs involved in compensating industry competitiveness loss?," Ecological Economics, Elsevier, vol. 184(C).
    10. Durmaz, Tunç & Schroyen, Fred, 2013. "Evaluating Carbon Capture and Storage in a Climate Model with Directed Technical Change," Discussion Paper Series in Economics 14/2013, Norwegian School of Economics, Department of Economics.
    11. Anita Punia, 2021. "Carbon dioxide sequestration by mines: implications for climate change," Climatic Change, Springer, vol. 165(1), pages 1-17, March.
    12. Siami, Navid & Winter, Ralph A., 2021. "Jevons’ paradox revisited: Implications for climate change," Economics Letters, Elsevier, vol. 206(C).
    13. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2014. "Optimal Timing of CCS Policies under Decreasing Returns to Scale," TSE Working Papers 14-529, Toulouse School of Economics (TSE).
    14. Erik Gawel & Sebastian Strunz & Sonja Peterson & Hartmut Möllring & Carl-Friedrich Elmer & Martin Faulstich & Christian Hey & Felix Höffler, 2015. "Climate Fees for Coal-Fired Power Stations: Is This the Right Step Towards Achieving Climate Goals?," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 68(14), pages 08-25, July.
    15. Hang Deng & Jeffrey M. Bielicki & Michael Oppenheimer & Jeffrey P. Fitts & Catherine A. Peters, 2017. "Leakage risks of geologic CO2 storage and the impacts on the global energy system and climate change mitigation," Climatic Change, Springer, vol. 144(2), pages 151-163, September.
    16. Matthias Weitzel, 2017. "Who gains from technological advancement? The role of policy design when cost development for key abatement technologies is uncertain," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(1), pages 151-181, January.
    17. Kalkuhl, Matthias & Steckel, Jan Christoph & Edenhofer, Ottmar, 2020. "All or nothing: Climate policy when assets can become stranded," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2013. "Renewable energy subsidies: Second-best policy or fatal aberration for mitigation?," Resource and Energy Economics, Elsevier, vol. 35(3), pages 217-234.
    2. Max Franks & Ottmar Edenhofer & Kai Lessmann, 2017. "Why Finance Ministers Favor Carbon Taxes, Even If They Do Not Take Climate Change into Account," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 445-472, November.
    3. Nachtigall, Daniel & Rübbelke, Dirk, 2016. "The green paradox and learning-by-doing in the renewable energy sector," Resource and Energy Economics, Elsevier, vol. 43(C), pages 74-92.
    4. Grimaud, André & Rouge, Luc, 2014. "Carbon sequestration, economic policies and growth," Resource and Energy Economics, Elsevier, vol. 36(2), pages 307-331.
    5. Durmaz, Tunç, 2018. "The economics of CCS: Why have CCS technologies not had an international breakthrough?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 328-340.
    6. Michael Hoel, 2011. "The Supply Side of CO 2 with Country Heterogeneity," Scandinavian Journal of Economics, Wiley Blackwell, vol. 113(4), pages 846-865, December.
    7. Jan Siegmeier & Linus Mattauch & Max Franks & David Klenert & Anselm Schultes & Ottmar Edenhofer, 2015. "A Public Finance Perspective on Climate Policy: Six Interactions That May Enhance Welfare," Working Papers 2015.31, Fondazione Eni Enrico Mattei.
    8. Hoel, Michael & Jensen, Svenn, 2012. "Cutting costs of catching carbon—Intertemporal effects under imperfect climate policy," Resource and Energy Economics, Elsevier, vol. 34(4), pages 680-695.
    9. Edenhofer, Ottmar & Hirth, Lion & Knopf, Brigitte & Pahle, Michael & Schlömer, Steffen & Schmid, Eva & Ueckerdt, Falko, 2013. "On the economics of renewable energy sources," Energy Economics, Elsevier, vol. 40(S1), pages 12-23.
    10. Johannes Pfeiffer, 2017. "Fossil Resources and Climate Change – The Green Paradox and Resource Market Power Revisited in General Equilibrium," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 77.
    11. Paul Lehmann & Patrik Söderholm, 2018. "Can Technology-Specific Deployment Policies Be Cost-Effective? The Case of Renewable Energy Support Schemes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(2), pages 475-505, October.
    12. Frederick van der Ploeg, 2013. "Cumulative Carbon Emissions and the Green Paradox," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 281-300, June.
    13. van der Werf, Edwin & Di Maria, Corrado, 2012. "Imperfect Environmental Policy and Polluting Emissions: The Green Paradox and Beyond," International Review of Environmental and Resource Economics, now publishers, vol. 6(2), pages 153-194, March.
    14. Christian Beermann, 2015. "Climate Policy and the Intertemporal Supply of Fossil Resources," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 62.
    15. Eisenack, Klaus & Edenhofer, Ottmar & Kalkuhl, Matthias, 2012. "Resource rents: The effects of energy taxes and quantity instruments for climate protection," Energy Policy, Elsevier, vol. 48(C), pages 159-166.
    16. Hendrik Ritter & Mark Schopf, 2014. "Unilateral Climate Policy: Harmful or Even Disastrous?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 155-178, May.
    17. Kai Lessmann & Matthias Kalkuhl, 2020. "Climate Finance Intermediation: Interest Spread Effects in a Climate Policy Model," CESifo Working Paper Series 8380, CESifo.
    18. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2012. "Optimal Timing of Carbon Capture Policies Under Alternative CCS Cost Functions," TSE Working Papers 12-318, Toulouse School of Economics (TSE).
    19. Armon Rezai & Frederick Ploeg, 2017. "Second-Best Renewable Subsidies to De-carbonize the Economy: Commitment and the Green Paradox," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 409-434, March.
    20. Eichner, Thomas & Pethig, Ru¨diger, 2013. "Flattening the carbon extraction path in unilateral cost-effective action," Journal of Environmental Economics and Management, Elsevier, vol. 66(2), pages 185-201.

    More about this item

    Keywords

    Renewable energy policy; Supply-side dynamics; Carbon pricing; Global warming; CCS; Hotelling; Second-best;
    All these keywords.

    JEL classification:

    • Q31 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Demand and Supply; Prices
    • Q38 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Government Policy (includes OPEC Policy)
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:60:y:2015:i:1:p:55-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.