IDEAS home Printed from https://ideas.repec.org/p/ler/wpaper/09.24.300.html
   My bibliography  Save this paper

Optimal Carbon Capture and Storage policies

Author

Listed:
  • Alain Ayong Le Kama
  • Mouez Fodha
  • LAFFORGUE Gilles

Abstract

Following the IPCC's report (2005), which recommended the development and the use of carbon capture and sequestration (CCS) technologies in order to achieve the environmental goals, defined by the Kyoto Protocol, the issue addressed in this paper concerns the optimal strategy regarding the long-term use of CCS technologies. The aim of this paper is to study the optimal carbon capture and sequestration policy. The CCS technologies has motivated a number of empirical studies, via complex integrated assessment models. This literature always considers that the existing technology allows sequestrating a fraction of the carbon emissions and concludes that the early introduction of sequestration can lead to a substantial decrease in the cost of environmental externality. But, the level of complexity of such operational models, aimed at defining some specific climate policies. We develop a very simple growth model so as to obtain analytical and tractable results and therefore exhibit the main driving forces that should determine the optimal CSS policy. We show within on the cost of extractions, CSS may be a long-term solution for the carbon emissions problem. Besides, it is also shown that the social planner will optimally choose to decrease the rate of capture and sequestration. Besides, we also introduce the decentralization of this simple economy, by considering the individual program of the fossil resource-holder and the one of the representative consumer. This helps us to compute analytically the optimal environmental policy, that is the also the optimal fossil fuel price profile.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Alain Ayong Le Kama & Mouez Fodha & LAFFORGUE Gilles, 2009. "Optimal Carbon Capture and Storage policies," LERNA Working Papers 09.24.300, LERNA, University of Toulouse.
  • Handle: RePEc:ler:wpaper:09.24.300
    as

    Download full text from publisher

    File URL: http://www2.toulouse.inra.fr/lerna/travaux/cahiers2009/09.24.300.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alain Ayong Le Kama & Katheline Schubert, 2006. "Ressources renouvelables et incertitude sur les préférences des générations futures," Revue d'économie politique, Dalloz, vol. 116(2), pages 229-250.
    2. Lafforgue, Gilles & Magné, Bertrand & Moreaux, Michel, 2008. "Energy substitutions, climate change and carbon sinks," Ecological Economics, Elsevier, vol. 67(4), pages 589-597, November.
    3. Alain Ayong Le Kama & Mouez Fodha, 2008. "Optimal Nuclear Waste Burial Policy under Uncertainty," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00348869, HAL.
    4. Reyer Gerlagh & Bob van der Zwaan, 2006. "Options and Instruments for a Deep Cut in CO2 Emissions: Carbon Dioxide Capture or Renewables, Taxes or Subsidies?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 25-48.
    5. Alain Le Kama & Katheline Schubert, 2004. "Growth, Environment and Uncertain Future Preferences," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(1), pages 31-53, May.
    6. Smulders, Sjak & Gradus, Raymond, 1996. "Pollution abatement and long-term growth," European Journal of Political Economy, Elsevier, vol. 12(3), pages 505-532, November.
    7. John Hartwick, 1977. "Intergenerational Equity and the Investment of Rents from Exhaustible Resources in a Two Sector Model," Working Papers 281, Queen's University, Department of Economics.
    8. Alain Ayong Le Kama, 2001. "Preservation and exogenous uncertain future preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 18(3), pages 745-752.
    9. André Grimaud & Luc Rouge, 2009. "Séquestration du carbone et politique climatique optimale," Économie et Prévision, Programme National Persée, vol. 190(4), pages 53-69.
    10. Reyer Gerlagh, 2006. "ITC in a Global Growth-Climate Model with CCS: The Value of Induced Technical Change for Climate Stabilization," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 223-240.
    11. Ragot, Lionel & Schubert, Katheline, 2008. "The optimal carbon sequestration in agricultural soils: Do the dynamics of the physical process matter?," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3847-3865, December.
    12. Edenhofer, Ottmar & Bauer, Nico & Kriegler, Elmar, 2005. "The impact of technological change on climate protection and welfare: Insights from the model MIND," Ecological Economics, Elsevier, vol. 54(2-3), pages 277-292, August.
    13. Hartwick, John M, 1977. "Intergenerational Equity and the Investing of Rents from Exhaustible Resources," American Economic Review, American Economic Association, vol. 67(5), pages 972-974, December.
    14. Kurosawa, Atsushi, 2004. "Carbon concentration target and technological choice," Energy Economics, Elsevier, vol. 26(4), pages 675-684, July.
    15. Grimaud, André & Lafforgue, Gilles & Magné, Bertrand, 2011. "Climate change mitigation options and directed technical change: A decentralized equilibrium analysis," Resource and Energy Economics, Elsevier, vol. 33(4), pages 938-962.
    16. Lafforgue, Gilles & Magné, Bertrand & Moreaux, Michel, 2006. "Optimal Sequestration Policy with a Ceiling on the Stock of Carbon in the Atmosphere," IDEI Working Papers 401, Institut d'Économie Industrielle (IDEI), Toulouse.
    17. Edmonds, Jae & Clarke, John & Dooley, James & Kim, Son H. & Smith, Steven J., 2004. "Stabilization of CO2 in a B2 world: insights on the roles of carbon capture and disposal, hydrogen, and transportation technologies," Energy Economics, Elsevier, vol. 26(4), pages 517-537, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2012. "Optimal Timing of Carbon Capture Policies Under Alternative CCS Cost Functions," TSE Working Papers 12-318, Toulouse School of Economics (TSE).
    2. repec:eee:ejores:v:264:y:2018:i:1:p:239-256 is not listed on IDEAS
    3. Pierre-André Jouvet & Marie Renner, 2014. "Social Acceptance and Optimal Pollution: CCS or Tax?," Working Papers 1403, Chaire Economie du climat.
    4. Matthias Kalkuhl & Ottmar Edenhofer & Kai Lessmann, 2015. "The Role of Carbon Capture and Sequestration Policies for Climate Change Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 60(1), pages 55-80, January.
    5. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2014. "Optimal Timing of Carbon Capture and Storage Policies Under Learning-by-doing," IDEI Working Papers 824, Institut d'Économie Industrielle (IDEI), Toulouse, revised May 2014.
    6. Hoel, Michael, 2013. "Supply Side Climate Policy and the Green Paradox," Memorandum 03/2013, Oslo University, Department of Economics.
    7. Hoel, Michael & Jensen, Svenn, 2012. "Cutting costs of catching carbon—Intertemporal effects under imperfect climate policy," Resource and Energy Economics, Elsevier, vol. 34(4), pages 680-695.
    8. Michael Hoel, 2011. "The Supply Side of CO 2 with Country Heterogeneity," Scandinavian Journal of Economics, Wiley Blackwell, vol. 113(4), pages 846-865, December.
    9. Grimaud, André & Rouge, Luc, 2014. "Carbon sequestration, economic policies and growth," Resource and Energy Economics, Elsevier, vol. 36(2), pages 307-331.
    10. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2014. "Optimal Timing of CCS Policies under Decreasing Returns to Scale," TSE Working Papers 14-529, Toulouse School of Economics (TSE).
    11. Jean-Pierre Amigues & Gilles Lafforgue & Michel Moreaux, 2014. "Optimal Timing of CCS Policies with Heterogeneous Energy Consumption Sectors," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(3), pages 345-366, March.
    12. Kollenbach, Gilbert, 2015. "Abatement, R&D and growth with a pollution ceiling," Journal of Economic Dynamics and Control, Elsevier, vol. 54(C), pages 1-16.
    13. Durmaz, Tunç & Schroyen, Fred, 2013. "Evaluating Carbon Capture and Storage in a Climate Model with Directed Technical Change," Discussion Paper Series in Economics 14/2013, Norwegian School of Economics, Department of Economics.
    14. repec:dau:papers:123456789/12981 is not listed on IDEAS
    15. Grimaud, André & Rougé, Luc, 2012. "Carbon Sequestration, Economic Policies and Growth," LERNA Working Papers 12.22.379, LERNA, University of Toulouse.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ler:wpaper:09.24.300. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Maxime MARTY). General contact details of provider: http://edirc.repec.org/data/lrtlsfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.