IDEAS home Printed from https://ideas.repec.org/p/ssb/dispap/639.html
   My bibliography  Save this paper

Cutting Costs of Catching Carbon. Intertemporal effects under imperfect climate policy

Author

Abstract

We use a two-period model to investigate intertemporal effects of cost reductions in climate change mitigation technologies for the power sector. With imperfect climate policies, cost reductions related to carbon capture and storage (CCS) may be more desirable than comparable cost reductions related to renewable energy. The finding rests on the incentives fossil resource owners face. With regulations of emissions only in the future, cheaper renewables speed up extraction (the `green paradox'), whereas CCS cost reductions make fossil resources more attractive for future use and lead to postponement of extraction.

Suggested Citation

  • Michael Hoel & Svenn Jensen, 2010. "Cutting Costs of Catching Carbon. Intertemporal effects under imperfect climate policy," Discussion Papers 639, Statistics Norway, Research Department.
  • Handle: RePEc:ssb:dispap:639
    as

    Download full text from publisher

    File URL: https://www.ssb.no/a/publikasjoner/pdf/DP/dp639.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Geoffrey Heal, 2010. "Reflections--The Economics of Renewable Energy in the United States," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(1), pages 139-154, Winter.
    2. K. G. Mäler & J. R. Vincent (ed.), 2005. "Handbook of Environmental Economics," Handbook of Environmental Economics, Elsevier, edition 1, volume 3, number 3.
    3. Long, Ngo Van & Sinn, Hans-Werner, 1985. "Surprise Price Shifts, Tax Changes and the Supply Behaviour of Resource Extracting Firms," Australian Economic Papers, Wiley Blackwell, vol. 24(45), pages 278-289, December.
    4. Thomas Eichner & Rüdiger Pethig, 2011. "Carbon Leakage, The Green Paradox, And Perfect Future Markets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(3), pages 767-805, August.
    5. Hoel, Michael & Kverndokk, Snorre, 1996. "Depletion of fossil fuels and the impacts of global warming," Resource and Energy Economics, Elsevier, vol. 18(2), pages 115-136, June.
    6. Özge .Ic{s}legen & Stefan Reichelstein, 2011. "Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis," Management Science, INFORMS, vol. 57(1), pages 21-39, January.
    7. Reyer Gerlagh & Bob van der Zwaan, 2006. "Options and Instruments for a Deep Cut in CO2 Emissions: Carbon Dioxide Capture or Renewables, Taxes or Subsidies?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 25-48.
    8. Ayong Le Kama, Alain & Fodha, Mouez & Lafforgue, Gilles, 2009. "Optimal Carbon Capture and Storage Policies," TSE Working Papers 09-095, Toulouse School of Economics (TSE).
    9. Chakravorty, Ujjayant & Leach, Andrew & Moreaux, Michel, 2011. "Would hotelling kill the electric car?," Journal of Environmental Economics and Management, Elsevier, vol. 61(3), pages 281-296, May.
    10. Reyer Gerlagh, 2011. "Too Much Oil," CESifo Economic Studies, CESifo Group, vol. 57(1), pages 79-102, March.
    11. Michael Hoel, 2011. "The Supply Side of CO 2 with Country Heterogeneity," Scandinavian Journal of Economics, Wiley Blackwell, vol. 113(4), pages 846-865, December.
    12. Sinclair, Peter J N, 1994. "On the Optimum Trend of Fossil Fuel Taxation," Oxford Economic Papers, Oxford University Press, vol. 46(0), pages 869-877, Supplemen.
    13. Corrado Di Maria & Sjak Smulders & Edwin van der Werf, 2008. "Absolute Abundance and Relative Scarcity: Announced Policy, Resource Extraction, and Carbon Emissions," Working Papers 2008.92, Fondazione Eni Enrico Mattei.
    14. Hans-Werner Sinn, 2008. "Public policies against global warming: a supply side approach," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 15(4), pages 360-394, August.
    15. Di Maria, Corrado & Smulders, Sjak & van der Werf, Edwin, 2012. "Absolute abundance and relative scarcity: Environmental policy with implementation lags," Ecological Economics, Elsevier, vol. 74(C), pages 104-119.
    16. Scott Barrett, 2009. "The Coming Global Climate-Technology Revolution," Journal of Economic Perspectives, American Economic Association, vol. 23(2), pages 53-75, Spring.
    17. Rolf Golombek & Mads Greaker & Sverre A.C. Kittelsen & Ole Røgeberg & Finn Roar Aune, 2011. "Carbon Capture and Storage Technologies in the European Power Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 209-238.
    18. Olli Tahvonen, 1997. "Fossil Fuels, Stock Externalities, and Backstop Technology," Canadian Journal of Economics, Canadian Economics Association, vol. 30(4), pages 855-874, November.
    19. van der Ploeg, Frederick & Withagen, Cees, 2012. "Is there really a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 342-363.
    20. Chakravorty, Ujjayant & Magne, Bertrand & Moreaux, Michel, 2006. "A Hotelling model with a ceiling on the stock of pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2875-2904, December.
    21. Sjak Smulders & Edwin Van Der Werf, 2008. "Climate policy and the optimal extraction of high‐ and low‐carbon fossil fuels," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 41(4), pages 1421-1444, November.
    22. Geoffrey Heal, 1976. "The Relationship Between Price and Extraction Cost for a Resource with a Backstop Technology," Bell Journal of Economics, The RAND Corporation, vol. 7(2), pages 371-378, Autumn.
    23. Barrett, Scott, 2005. "The theory of international environmental agreements," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 3, chapter 28, pages 1457-1516, Elsevier.
    24. Jon Strand, 2007. "Technology Treaties and Fossil-Fuels Extraction," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 129-142.
    25. Lohwasser, Richard & Madlener, Reinhard, 2012. "Economics of CCS for coal plants: Impact of investment costs and efficiency on market diffusion in Europe," Energy Economics, Elsevier, vol. 34(3), pages 850-863.
    26. Donald A. Hanson, 1980. "Increasing Extraction Costs and Resource Prices: Some Further Results," Bell Journal of Economics, The RAND Corporation, vol. 11(1), pages 335-342, Spring.
    27. Sinclair, P.J.N., 1994. "On the Optimum Trend of Fossil Fuel Taxation," Discussion Papers 94-16, Department of Economics, University of Birmingham.
    28. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    29. Myles R. Allen & David J. Frame & Chris Huntingford & Chris D. Jones & Jason A. Lowe & Malte Meinshausen & Nicolai Meinshausen, 2009. "Warming caused by cumulative carbon emissions towards the trillionth tonne," Nature, Nature, vol. 458(7242), pages 1163-1166, April.
    30. Withagen, Cees, 1994. "Pollution and exhaustibility of fossil fuels," Resource and Energy Economics, Elsevier, vol. 16(3), pages 235-242, August.
    31. Ulph, Alistair & Ulph, David, 1994. "The Optimal Time Path of a Carbon Tax," Oxford Economic Papers, Oxford University Press, vol. 46(0), pages 857-868, Supplemen.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoel, Michael, 2013. "Supply Side Climate Policy and the Green Paradox," Memorandum 03/2013, Oslo University, Department of Economics.
    2. Nachtigall, Daniel & Rübbelke, Dirk, 2016. "The green paradox and learning-by-doing in the renewable energy sector," Resource and Energy Economics, Elsevier, vol. 43(C), pages 74-92.
    3. van der Werf, Edwin & Di Maria, Corrado, 2012. "Imperfect Environmental Policy and Polluting Emissions: The Green Paradox and Beyond," International Review of Environmental and Resource Economics, now publishers, vol. 6(2), pages 153-194, March.
    4. Christian Beermann, 2015. "Climate Policy and the Intertemporal Supply of Fossil Resources," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 62, May.
    5. Quentin Grafton, R. & Kompas, Tom & Van Long, Ngo, 2012. "Substitution between biofuels and fossil fuels: Is there a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 328-341.
    6. van der Ploeg, Frederick & Withagen, Cees, 2012. "Is there really a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 342-363.
    7. Michael Hoel, 2011. "The Supply Side of CO 2 with Country Heterogeneity," Scandinavian Journal of Economics, Wiley Blackwell, vol. 113(4), pages 846-865, December.
    8. Eichner, Thomas & Pethig, Ru¨diger, 2013. "Flattening the carbon extraction path in unilateral cost-effective action," Journal of Environmental Economics and Management, Elsevier, vol. 66(2), pages 185-201.
    9. Ngo Van Long, 2014. "The Green Paradox in Open Economies," CESifo Working Paper Series 4639, CESifo.
    10. Grimaud, André & Rouge, Luc, 2014. "Carbon sequestration, economic policies and growth," Resource and Energy Economics, Elsevier, vol. 36(2), pages 307-331.
    11. Ngo Van LONG, 2014. "The Green Paradox under Imperfect Substitutability between Clean and Dirty Fuels," Cahiers de recherche 02-2014, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    12. van der Ploeg, Frederick & Withagen, Cees, 2012. "Too much coal, too little oil," Journal of Public Economics, Elsevier, vol. 96(1), pages 62-77.
    13. Corrado Di Maria & Sjak Smulders & Edwin Werf, 2017. "Climate Policy with Tied Hands: Optimal Resource Taxation Under Implementation Lags," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 537-551, March.
    14. Johannes Pfeiffer, 2017. "Fossil Resources and Climate Change – The Green Paradox and Resource Market Power Revisited in General Equilibrium," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 77, May.
    15. Luise Röpke, 2015. "Essays on the Integration of New Energy Sources into Existing Energy Systems," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 58, May.
    16. Michielsen, Thomas O., 2014. "Brown backstops versus the green paradox," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 87-110.
    17. Michael Hoel, 2008. "Bush Meets Hotelling: Effects of Improved Renewable Energy Technology on Greenhouse Gas Emissions," CESifo Working Paper Series 2492, CESifo.
    18. Fischer, Carolyn & Salant, Stephen W., 2017. "Balancing the carbon budget for oil: The distributive effects of alternative policies," European Economic Review, Elsevier, vol. 99(C), pages 191-215.
    19. Marc Gronwald & Ngo Van Long & Luise Röpke, 2013. "Simultaneous Supplies of Dirty and Green Fuels with Capacity Constraint: Is there a Green Paradox?," CESifo Working Paper Series 4360, CESifo.
    20. Thomas Michielsen, 2013. "Brown Backstops Versus the Green Paradox," OxCarre Working Papers 108, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.

    More about this item

    Keywords

    climate change; exhaustible resources; carbon capture and storage; renewable energy; green paradox;
    All these keywords.

    JEL classification:

    • Q30 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - General
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssb:dispap:639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: L Maasø (email available below). General contact details of provider: https://edirc.repec.org/data/ssbgvno.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.