IDEAS home Printed from https://ideas.repec.org/p/ssb/dispap/107.html
   My bibliography  Save this paper

Depletion of Fossil Fuels and the impact of Global Warming

Author

Listed:

Abstract

This paper combines the theory of optimal extraction of exhaustible resources with the theory of greenhouse externalities, to analyse problems of global warming when the supply side is considered. The optimal carbon tax will initially rise but eventually fall when the externality is positively related to the stock of carbon in the atmosphere. It is shown that the tax will start falling before the stock of carbon in the atmosphere reaches its maximum. If, on the other hand, the greenhouse externality depends on the rate of change in the atmospheric stock of carbon, the evolution of the optimal carbon tax is more complex. It can even be optimal to subsidise carbon emissions to avoid future rapid changes in the stock of carbon, and therefore future damages. If the externality is related to the stock of carbon in the atmosphere and there exists a non-polluting backstop technology, it will be optimal to extract and consume fossil fuels even when the price of fossil fuels is equal to the price of the backstop. The total extraction is the same as when the externality is ignored, but in the presence of the greenhouse effect, it will be optimal to slow the extraction and spread it over a longer period.

Suggested Citation

  • Snorre Kverndokk, 1994. "Depletion of Fossil Fuels and the impact of Global Warming," Discussion Papers 107, Statistics Norway, Research Department.
  • Handle: RePEc:ssb:dispap:107
    as

    Download full text from publisher

    File URL: https://www.ssb.no/a/publikasjoner/pdf/DP/dp_107.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Geoffrey Heal, 1976. "The Relationship Between Price and Extraction Cost for a Resource with a Backstop Technology," Bell Journal of Economics, The RAND Corporation, vol. 7(2), pages 371-378, Autumn.
    2. Sinclair, Peter J N, 1992. "High Does Nothing and Rising Is Worse: Carbon Taxes Should Keep Declining to Cut Harmful Emissions," The Manchester School of Economic & Social Studies, University of Manchester, vol. 60(1), pages 41-52, March.
    3. Nordhaus, William D, 1991. "To Slow or Not to Slow: The Economics of the Greenhouse Effect," Economic Journal, Royal Economic Society, vol. 101(407), pages 920-937, July.
    4. Stephen C Peck & Thomas J. Teisberg, 1992. "CETA: A Model for Carbon Emissions Trajectory Assessment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 55-78.
    5. Olli Tahvonen, 1995. "Dynamics of pollution control when damage is sensitive to the rate of pollution accumulation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 5(1), pages 9-27, January.
    6. Farzin, Y H, 1992. "The Time Path of Scarcity Rent in the Theory of Exhaustible Resources," Economic Journal, Royal Economic Society, vol. 102(413), pages 813-830, July.
    7. Nordhaus, William D., 1993. "Rolling the 'DICE': an optimal transition path for controlling greenhouse gases," Resource and Energy Economics, Elsevier, vol. 15(1), pages 27-50, March.
    8. William R. Cline, 1992. "Economics of Global Warming, The," Peterson Institute Press: All Books, Peterson Institute for International Economics, number 39, October.
    9. Withagen, Cees, 1994. "Pollution and exhaustibility of fossil fuels," Resource and Energy Economics, Elsevier, vol. 16(3), pages 235-242, August.
    10. Baumol,William J. & Oates,Wallace E., 1988. "The Theory of Environmental Policy," Cambridge Books, Cambridge University Press, number 9780521322249, January.
    11. Samuel Fankhauser, 1994. "The Social Costs of Greenhouse Gas Emissions: An Expected Value Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 157-184.
    12. Ulph, Alistair & Ulph, David, 1994. "The Optimal Time Path of a Carbon Tax," Oxford Economic Papers, Oxford University Press, vol. 46(0), pages 857-868, Supplemen.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toth, Ferenc L, 1995. "Discounting in integrated assessments of climate change," Energy Policy, Elsevier, vol. 23(4-5), pages 403-409.
    2. Michael Hoel, 2008. "Bush Meets Hotelling: Effects of Improved Renewable Energy Technology on Greenhouse Gas Emissions," CESifo Working Paper Series 2492, CESifo.
    3. Hoel, Michael, 2013. "Supply Side Climate Policy and the Green Paradox," Memorandum 03/2013, Oslo University, Department of Economics.
    4. Michael Hoel, 2010. "Climate Change and Carbon Tax Expectations," CESifo Working Paper Series 2966, CESifo.
    5. Azar, Christian & Sterner, Thomas, 1996. "Discounting and distributional considerations in the context of global warming," Ecological Economics, Elsevier, vol. 19(2), pages 169-184, November.
    6. Plambeck, Erica L & Hope, Chris, 1996. "PAGE95 : An updated valuation of the impacts of global warming," Energy Policy, Elsevier, vol. 24(9), pages 783-793, September.
    7. Fankhauser, Samuel & Kverndokk, Snorre, 1996. "The global warming game -- Simulations of a CO2-reduction agreement," Resource and Energy Economics, Elsevier, vol. 18(1), pages 83-102, March.
    8. Tol, Richard S.J., 2006. "The Polluter Pays Principle and Cost-Benefit Analysis of Climate Change: An Application of Fund," Climate Change Modelling and Policy Working Papers 12058, Fondazione Eni Enrico Mattei (FEEM).
    9. Wei, Yi-Ming & Mi, Zhi-Fu & Huang, Zhimin, 2015. "Climate policy modeling: An online SCI-E and SSCI based literature review," Omega, Elsevier, vol. 57(PA), pages 70-84.
    10. Corrado Di Maria & Sjak Smulders & Edwin Werf, 2017. "Climate Policy with Tied Hands: Optimal Resource Taxation Under Implementation Lags," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 537-551, March.
    11. Havranek, Tomas & Irsova, Zuzana & Janda, Karel & Zilberman, David, 2015. "Selective reporting and the social cost of carbon," Energy Economics, Elsevier, vol. 51(C), pages 394-406.
    12. Quentin Grafton, R. & Kompas, Tom & Van Long, Ngo, 2012. "Substitution between biofuels and fossil fuels: Is there a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 328-341.
    13. Michael Hoel, 2011. "The Supply Side of CO 2 with Country Heterogeneity," Scandinavian Journal of Economics, Wiley Blackwell, vol. 113(4), pages 846-865, December.
    14. Tol, Richard S. J., 2008. "The Social Cost of Carbon: Trends, Outliers and Catastrophes," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 2, pages 1-22.
    15. Emilio Padilla, 2002. "Limitations and biases of conventional analysis of climate change. Towards an analysis coherent with sustainable development," Working Papers wp0206, Department of Applied Economics at Universitat Autonoma of Barcelona.
    16. Hotel, Michael, 2008. "Bush Meets Hotelling: Effects of Improved Renewable Energy Technology on Greenhouse Gas Emissions," Memorandum 29/2008, Oslo University, Department of Economics.
    17. Wirl, Franz & Dockner, Engelbert, 1995. "Leviathan governments and carbon taxes: Costs and potential benefits," European Economic Review, Elsevier, vol. 39(6), pages 1215-1236, June.
    18. Guruswamy Babu, P. & Kavi Kumar, K. S. & Murthy, N. S., 1997. "An overlapping generations model with exhaustible resources and stock pollution," Ecological Economics, Elsevier, vol. 21(1), pages 35-43, April.
    19. Tol, Richard S.J., 2013. "Targets for global climate policy: An overview," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 911-928.
    20. Gjerde, Jon & Grepperud, Sverre & Kverndokk, Snorre, 1999. "Optimal climate policy under the possibility of a catastrophe," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 289-317, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssb:dispap:107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: L Maasø (email available below). General contact details of provider: https://edirc.repec.org/data/ssbgvno.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.