IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_3284.html
   My bibliography  Save this paper

Cutting Costs of Catching Carbon - Intertemporal Effects under Imperfect Climate Policy

Author

Listed:
  • Michael Hoel
  • Svenn Jensen

Abstract

We use a two-period model to investigate intertemporal effects of cost reductions in climate change mitigation technologies for the power sector. With imperfect climate policies, cost reductions related to carbon capture and storage (CCS) may be more desirable than com-parable cost reductions related to renewable energy. The finding rests on the incentives fossil resource owners face. With regulations of emissions only in the future, cheaper renewables speed up extraction (the ‘green paradox’), whereas CCS cost reductions make fossil resources more attractive for future use and lead to postponement of extraction.

Suggested Citation

  • Michael Hoel & Svenn Jensen, 2010. "Cutting Costs of Catching Carbon - Intertemporal Effects under Imperfect Climate Policy," CESifo Working Paper Series 3284, CESifo.
  • Handle: RePEc:ces:ceswps:_3284
    as

    Download full text from publisher

    File URL: https://www.cesifo.org/DocDL/cesifo1_wp3284.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ayong Le Kama, Alain & Fodha, Mouez & Lafforgue, Gilles, 2009. "Optimal Carbon Capture and Storage Policies," TSE Working Papers 09-095, Toulouse School of Economics (TSE).
    2. Corrado Di Maria & Sjak Smulders & Edwin van der Werf, 2008. "Absolute Abundance and Relative Scarcity: Announced Policy, Resource Extraction, and Carbon Emissions," Working Papers 2008.92, Fondazione Eni Enrico Mattei.
    3. van der Ploeg, Frederick & Withagen, Cees, 2012. "Is there really a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 342-363.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthias Kalkuhl & Ottmar Edenhofer & Kai Lessmann, 2015. "The Role of Carbon Capture and Sequestration Policies for Climate Change Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 60(1), pages 55-80, January.
    2. van der Werf, Edwin & Di Maria, Corrado, 2012. "Imperfect Environmental Policy and Polluting Emissions: The Green Paradox and Beyond," International Review of Environmental and Resource Economics, now publishers, vol. 6(2), pages 153-194, March.
    3. Grimaud, André & Rouge, Luc, 2014. "Carbon sequestration, economic policies and growth," Resource and Energy Economics, Elsevier, vol. 36(2), pages 307-331.
    4. Edwin van der Werf & Corrado Di Maria, 2011. "Unintended Detrimental Effects of Environmental Policy: The Green Paradox and Beyond," CESifo Working Paper Series 3466, CESifo.
    5. Rübbelke, Dirk & Vögele, Stefan, 2013. "Effects of carbon dioxide capture and storage in Germany on European electricity exchange and welfare," Energy Policy, Elsevier, vol. 59(C), pages 582-588.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hart, Rob & Spiro, Daniel, 2011. "The elephant in Hotelling's room," Energy Policy, Elsevier, vol. 39(12), pages 7834-7838.
    2. Grimaud, André & Rouge, Luc, 2014. "Carbon sequestration, economic policies and growth," Resource and Energy Economics, Elsevier, vol. 36(2), pages 307-331.
    3. Ngo Van LONG, 2014. "The Green Paradox under Imperfect Substitutability between Clean and Dirty Fuels," Cahiers de recherche 02-2014, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    4. Quentin Grafton, R. & Kompas, Tom & Van Long, Ngo, 2012. "Substitution between biofuels and fossil fuels: Is there a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 328-341.
    5. Durmaz, Tunç, 2018. "The economics of CCS: Why have CCS technologies not had an international breakthrough?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 328-340.
    6. Michael Hoel, 2011. "The Supply Side of CO 2 with Country Heterogeneity," Scandinavian Journal of Economics, Wiley Blackwell, vol. 113(4), pages 846-865, December.
    7. Edwin van der Werf & Corrado Di Maria, 2011. "Unintended Detrimental Effects of Environmental Policy: The Green Paradox and Beyond," CESifo Working Paper Series 3466, CESifo.
    8. Smulders, Sjak & Tsur, Yacov & Zemel, Amos, 2012. "Announcing climate policy: Can a green paradox arise without scarcity?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 364-376.
    9. Hoel, Michael, 2013. "Supply Side Climate Policy and the Green Paradox," Memorandum 03/2013, Oslo University, Department of Economics.
    10. Thomas Michielsen, 2013. "Brown Backstops Versus the Green Paradox," OxCarre Working Papers 108, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    11. Ngo Van Long, 2014. "The Green Paradox in Open Economies," CESifo Working Paper Series 4639, CESifo.
    12. Kollenbach, Gilbert, 2015. "Abatement, R&D and growth with a pollution ceiling," Journal of Economic Dynamics and Control, Elsevier, vol. 54(C), pages 1-16.
    13. Açıkgöz, Ömer T. & Benchekroun, Hassan, 2017. "Anticipated international environmental agreements," European Economic Review, Elsevier, vol. 92(C), pages 306-336.
    14. Benjamin Jones & Michael Keen & Jon Strand, 2013. "Fiscal implications of climate change," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 20(1), pages 29-70, February.
    15. Wirl, Franz, 2014. "Taxes versus permits as incentive for the intertemporal supply of a clean technology by a monopoly," Resource and Energy Economics, Elsevier, vol. 36(1), pages 248-269.
    16. Hendrik Ritter & Mark Schopf, 2014. "Unilateral Climate Policy: Harmful or Even Disastrous?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 155-178, May.
    17. Cai, W. & Singham, D.I., 2018. "A principal–agent problem with heterogeneous demand distributions for a carbon capture and storage system," European Journal of Operational Research, Elsevier, vol. 264(1), pages 239-256.
    18. Thomas Eichner & Rüdiger Pethig, 2010. "The carbon-budget approach to climate stabilization: Cost-effective subglobal versus global action," Volkswirtschaftliche Diskussionsbeiträge 143-10, Universität Siegen, Fakultät Wirtschaftswissenschaften, Wirtschaftsinformatik und Wirtschaftsrecht.
    19. Gustav Engström & Johan Gars, 2016. "Climatic Tipping Points and Optimal Fossil-Fuel Use," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 541-571, November.
    20. Pauli Lappi & Markku Ollikainen, 2019. "Optimal Environmental Policy for a Mine Under Polluting Waste Rocks and Stock Pollution," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(1), pages 133-158, May.

    More about this item

    Keywords

    climate change; exhaustible resources; carbon capture and storage; renewable energy; green paradox;
    All these keywords.

    JEL classification:

    • Q30 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - General
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_3284. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Klaus Wohlrabe). General contact details of provider: http://edirc.repec.org/data/cesifde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.