IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison

  • Gunnar Luderer

    ()

  • Valentina Bosetti

    ()

  • Michael Jakob

    ()

  • Marian Leimbach

    ()

  • Jan Steckel

    ()

  • Henri Waisman

    ()

  • Ottmar Edenhofer

    ()

This paper synthesizes the results from the model intercomparison exercise among regionalized global energy-economy models conducted in the context of the RECIPE project. The economic adjustment effects of long-term climate policy are investigated based on the cross-comparison of the intertemporal optimization models ReMIND-R and WITCH as well as the recursive dynamic computable general equilibrium model IMACLIM-R. A number of robust findings emerge. If the international community takes immediate action to mitigate climate change, the costs of stabilizing atmospheric CO 2 concentrations at 450 ppm (roughly 530–550 ppm-e) discounted at 3% are estimated to be 1.4% or lower of global consumption over the twenty-first century. Second best settings with either a delay in climate policy or restrictions to the deployment of low-carbon technologies can result in substantial increases of mitigation costs. A delay of global climate policy until 2030 would render the 450 ppm target unachievable. Renewables and CCS are found to be the most critical mitigation technologies, and all models project a rapid switch of investments away from freely emitting energy conversion technologies towards renewables, CCS and nuclear. Concerning end use sectors, the models consistently show an almost full scale decarbonization of the electricity sector by the middle of the twenty-first century, while the decarbonization of non-electric energy demand, in particular in the transport sector remains incomplete in all mitigation scenarios. The results suggest that assumptions about low-carbon alternatives for non-electric energy demand are of key importance for the costs and achievability of very low stabilization scenarios. Copyright Springer Science+Business Media B.V. 2012

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1007/s10584-011-0105-x
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Springer in its journal Climatic Change.

Volume (Year): 114 (2012)
Issue (Month): 1 (September)
Pages: 9-37

as
in new window

Handle: RePEc:spr:climat:v:114:y:2012:i:1:p:9-37
Contact details of provider: Web page: http://www.springer.com/economics/journal/10584

Order Information: Web: http://link.springer.de/orders.htm

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jean-Charles Hourcade & Olivier Sassi & Renaud Crassous & Vincent Gitz & Henri Waisman & Céline Guivarch, 2010. "IMACLIM-R: a modelling framework to simulate sustainable development pathways," Post-Print hal-00566290, HAL.
  2. Enrica Cian & Valentina Bosetti & Massimo Tavoni, 2012. "Technology innovation and diffusion in “less than ideal” climate policies: An assessment with the WITCH model," Climatic Change, Springer, vol. 114(1), pages 121-143, September.
  3. Michael Jakob & Gunnar Luderer & Jan Steckel & Massimo Tavoni & Stephanie Monjon, 2012. "Time to act now? Assessing the costs of delaying climate measures and benefits of early action," Climatic Change, Springer, vol. 114(1), pages 79-99, September.
  4. Valentina Bosetti & Carlo Carraro & Marzio Galeotti & Emanuele Massetti & Massimo Tavoni, 2006. "WITCH. A World Induced Technical Change Hybrid Model," Working Papers 2006_46, Department of Economics, University of Venice "Ca' Foscari".
  5. Ottmar Edenhofer, Kai Lessmann, Claudia Kemfert, Michael Grubb and Jonathan Kohler , 2006. "Induced Technological Change: Exploring its Implications for the Economics of Atmospheric Stabilization: Synthesis Report from the Innovation Modeling Comparison Project," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 57-108.
  6. John P. Weyant, Francisco C. de la Chesnaye, and Geoff J. Blanford, 2006. "Overview of EMF-21: Multigas Mitigation and Climate Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-32.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:114:y:2012:i:1:p:9-37. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn)

or (Christopher F Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.