IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v34y2012i4p624-646.html
   My bibliography  Save this article

Do technology externalities justify restrictions on emission permit trading?

Author

Listed:
  • De Cian, Enrica
  • Tavoni, Massimo

Abstract

International emission trading is an important flexibility mechanism, but its use has been often restricted on the ground that access to international carbon credits can undermine the domestic abatement effort reducing the incentive to innovate and, eventually, lowering the pace of climate policy-induced technological change. This paper examines the economics that is behind these concerns by studying how a cap to the trade of carbon offsets influences innovation, technological change, and welfare. By using a standard game of abatement and R&D, we investigate the main mechanisms that shape these relationships. We also use a numerical integrated assessment model that features environmental and technology externalities to quantify how limits to the volume, the timing, and the regional allocation of carbon offsets affect climate policy costs and the incentive to invest in innovation and low-carbon technologies.

Suggested Citation

  • De Cian, Enrica & Tavoni, Massimo, 2012. "Do technology externalities justify restrictions on emission permit trading?," Resource and Energy Economics, Elsevier, vol. 34(4), pages 624-646.
  • Handle: RePEc:eee:resene:v:34:y:2012:i:4:p:624-646
    DOI: 10.1016/j.reseneeco.2012.05.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928765512000425
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.reseneeco.2012.05.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Tavoni, Massimo, 2008. "International energy R&D spillovers and the economics of greenhouse gas atmospheric stabilization," Energy Economics, Elsevier, vol. 30(6), pages 2912-2929, November.
    2. Dechezleprêtre, Antoine & Glachant, Matthieu & Ménière, Yann, 2008. "The Clean Development Mechanism and the international diffusion of technologies: An empirical study," Energy Policy, Elsevier, vol. 36(4), pages 1273-1283, April.
    3. Valentina Bosetti & Carlo Carraro & Marzio Galeotti & Emanuele Massetti & Massimo Tavoni, 2006. "WITCH. A World Induced Technical Change Hybrid Model," Working Papers 2006_46, Department of Economics, University of Venice "Ca' Foscari".
    4. McKibbin, Warwick J. & Shackleton, Robert & Wilcoxen, Peter J., 1999. "What to expect from an international system of tradable permits for carbon emissions," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 319-346, August.
    5. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2003. "Chapter 11 Technological change and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 11, pages 461-516, Elsevier.
    6. Karp, Larry & Zhao, Jinhua, 2009. "Suggestions for the Road to Copenhagen," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt3nj4h7k2, Department of Agricultural & Resource Economics, UC Berkeley.
    7. Heal, Geoffrey & Tarui, Nori, 2010. "Investment and emission control under technology and pollution externalities," Resource and Energy Economics, Elsevier, vol. 32(1), pages 1-14, January.
    8. Golombek, Rolf & Hoel, Michael, 2008. "Endogenous technology and tradable emission quotas," Resource and Energy Economics, Elsevier, vol. 30(2), pages 197-208, May.
    9. Parkash Chandler & Henry Tulkens & Jean-Pascal Ypersele & Stephane Willems, 2006. "The Kyoto Protocol: An Economic and Game Theoretic Interpretation," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 195-215, Springer.
    10. Bosetti, Valentina & De Cian, Enrica & Sgobbi, Alessandra & Tavoni, Massimo, 2009. "The 2008 WITCH Model: New Model Features and Baseline," Sustainable Development Papers 55284, Fondazione Eni Enrico Mattei (FEEM).
    11. Mustafa Babiker, John Reilly and Laurent Viguier, 2004. "Is International Emissions Trading Always Beneficial?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 33-56.
    12. Wolfgang Keller, 2004. "International Technology Diffusion," Journal of Economic Literature, American Economic Association, vol. 42(3), pages 752-782, September.
    13. R. G. Lipsey & Kelvin Lancaster, 1956. "The General Theory of Second Best," Review of Economic Studies, Oxford University Press, vol. 24(1), pages 11-32.
    14. Jean-Marc Burniaux & Joaquim Oliveira Martins, 2000. "Carbon Emission Leakages: A General Equilibrium View," OECD Economics Department Working Papers 242, OECD Publishing.
    15. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    16. Reyer Gerlagh & Snorre Kverndokk & Knut Rosendahl, 2009. "Optimal Timing of Climate Change Policy: Interaction Between Carbon Taxes and Innovation Externalities," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 369-390, July.
    17. Elena Verdolini & Marzio Galeotti, 2009. "At Home and Abroad: An Empirical Analysis of Innovation and Diffusion in Energy-Efficient Technologies," Working Papers 2009.123, Fondazione Eni Enrico Mattei.
    18. Lecocq, Franck & Hourcade, Jean-Charles & Ha Duong, Minh, 1998. "Decision making under uncertainty and inertia constraints: sectoral implications of the when flexibility," Energy Economics, Elsevier, vol. 20(5-6), pages 539-555, December.
    19. S. Paltsev & J. Reilly & H. Jacoby & A. Gurgel & G. Metcalf & A. Sokolov & J. Holak, 2007. "Assessment of U.S. Cap-and-Trade Proposals," Working Papers 0705, Massachusetts Institute of Technology, Center for Energy and Environmental Policy Research.
    20. Lori Bennear & Robert Stavins, 2007. "Second-best theory and the use of multiple policy instruments," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(1), pages 111-129, May.
    21. Karan Capoor & Philippe Ambrosi, "undated". "State and Trends of the Carbon Market 2009," World Bank Publications - Reports 13403, The World Bank Group.
    22. Verdolini, Elena & Galeotti, Marzio, 2011. "At home and abroad: An empirical analysis of innovation and diffusion in energy technologies," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 119-134, March.
    23. Golombek Rolf & Hoel Michael, 2006. "Second-Best Climate Agreements and Technology Policy," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 6(1), pages 1-30, January.
    24. Valentina Bosetti & Carlo Carraro & Massimo Tavoni, 2009. "Climate Policy after 2012," CESifo Economic Studies, CESifo, vol. 55(2), pages 235-254, June.
    25. Baker, Erin & Clarke, Leon & Shittu, Ekundayo, 2008. "Technical change and the marginal cost of abatement," Energy Economics, Elsevier, vol. 30(6), pages 2799-2816, November.
    26. Seres, Stephen & Haites, Erik & Murphy, Kevin, 2009. "Analysis of technology transfer in CDM projects: An update," Energy Policy, Elsevier, vol. 37(11), pages 4919-4926, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Wei & Zhang, ZhongXiang, 2016. "On the mechanism of international technology diffusion for energy technological progress," Resource and Energy Economics, Elsevier, vol. 46(C), pages 39-61.
    2. Jørgen Juel Andersen & Mads Greaker, 2018. "Emission Trading with Fiscal Externalities: The Case for a Common Carbon Tax for the Non-ETS Emissions in the EU," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(3), pages 803-823, November.
    3. Sferra, Fabio & Tavoni, Massimo, 2013. "Endogenous Participation in a Partial Climate Agreement with Open Entry: A Numerical Assessment," Climate Change and Sustainable Development 156486, Fondazione Eni Enrico Mattei (FEEM).
    4. Enrica Cian & Samuel Carrara & Massimo Tavoni, 2014. "Innovation benefits from nuclear phase-out: can they compensate the costs?," Climatic Change, Springer, vol. 123(3), pages 637-650, April.
    5. Thang Nguyen & Lan Nguyen & Scott Bryant & Hieu Nguyen, 2020. "What Motivates Scientists in Emerging Economies to Become Entrepreneurs? Evidence from Vietnam," Sustainability, MDPI, Open Access Journal, vol. 12(3), pages 1-18, February.
    6. Yingxuan Zhang, 2020. "Regional Collaborative Electricity Consumption Management: an Urban Operations Research Model," SN Operations Research Forum, Springer, vol. 1(4), pages 1-28, December.
    7. Wei Jin, 2012. "International Knowledge Spillover and Technology Externality: Why Multilateral R&D Coordination Matters for Global Climate Governance," CAMA Working Papers 2012-53, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    8. Hof, Andries F. & Carrara, Samuel & De Cian, Enrica & Pfluger, Benjamin & van Sluisveld, Mariësse A.E. & de Boer, Harmen Sytze & van Vuuren, Detlef P., 2020. "From global to national scenarios: Bridging different models to explore power generation decarbonisation based on insights from socio-technical transition case studies," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    9. Jin, Wei, 2016. "International technology diffusion, multilateral R&D coordination, and global climate mitigation," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 357-372.
    10. Bento, Antonio M. & Kanbur, Ravi & Leard, Benjamin, 2015. "Designing efficient markets for carbon offsets with distributional constraints," Journal of Environmental Economics and Management, Elsevier, vol. 70(C), pages 51-71.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Wei & Zhang, ZhongXiang, 2016. "On the mechanism of international technology diffusion for energy technological progress," Resource and Energy Economics, Elsevier, vol. 46(C), pages 39-61.
    2. Jin, Wei & Zhang, ZhongXiang, 2014. "On the Mechanism of International Technology Diffusion for Energy Productivity Growth," Climate Change and Sustainable Development 172434, Fondazione Eni Enrico Mattei (FEEM).
    3. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    4. Jin, Wei, 2016. "International technology diffusion, multilateral R&D coordination, and global climate mitigation," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 357-372.
    5. Wei Jin & ZhongXiang Zhang, 2014. "Explaining the Slow Pace of Energy Technological Innovation: Why Market Conditions Matter," CCEP Working Papers 1401, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    6. Miremadi, I. & Saboohi, Y. & Arasti, M., 2019. "The influence of public R&D and knowledge spillovers on the development of renewable energy sources: The case of the Nordic countries," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 450-463.
    7. Wei Jin, 2012. "International Knowledge Spillover and Technology Externality: Why Multilateral R&D Coordination Matters for Global Climate Governance," CAMA Working Papers 2012-53, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    8. Emanuele Massetti & Lea Nicita, 2010. "The Optimal Climate Policy Portfolio when Knowledge Spills across Sectors," CESifo Working Paper Series 2988, CESifo.
    9. Adrien Vogt-Schilb & Guy Meunier & Stéphane Hallegatte, 2013. "Should marginal abatement costs differ across sectors? The effect of low-carbon capital accumulation," Working Papers hal-00850682, HAL.
    10. Vogt-Schilb, Adrien & Meunier, Guy & Hallegatte, Stephane, 2012. "How inertia and limited potentials affect the timing of sectoral abatements in optimal climate policy," Policy Research Working Paper Series 6154, The World Bank.
    11. Dechezlepretre, Antoine & Perkins, Richard & Neumayer, Eric, 2012. "Regulatory Distance and the Transfer of New Environmentally Sound Technologies: Evidence from the Automobile Sector," Climate Change and Sustainable Development 128199, Fondazione Eni Enrico Mattei (FEEM).
    12. Leimbach, Marian & Baumstark, Lavinia, 2010. "The impact of capital trade and technological spillovers on climate policies," Ecological Economics, Elsevier, vol. 69(12), pages 2341-2355, October.
    13. Francesco Vona & Francesco Nicolli & Lionel Nesta, 2012. "Determinants of renewable energy innovation: environmental policies vs. market regulation," Sciences Po publications 2012-05, Sciences Po.
    14. Lehmann, Paul, 2013. "Supplementing an emissions tax by a feed-in tariff for renewable electricity to address learning spillovers," Energy Policy, Elsevier, vol. 61(C), pages 635-641.
    15. Marius Christian Ley, 2010. "Insights into the Determinants of Innovation in Energy Efficiency," KOF Working papers 10-266, KOF Swiss Economic Institute, ETH Zurich.
    16. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    17. Matthieu Glachant, 2013. "Greening Global Value Chains: Innovation and the International Diffusion of Technologies and Knowledge," OECD Green Growth Papers 2013/5, OECD Publishing.
    18. Dechezleprêtre, Antoine & Neumayer, Eric & Perkins, Richard, 2015. "Environmental regulation and the cross-border diffusion of new technology: Evidence from automobile patents," Research Policy, Elsevier, vol. 44(1), pages 244-257.
    19. Robert Schmidt & Roland Strausz, 2015. "On the Timing of Climate Agreements," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(3), pages 521-547, November.
    20. Iman Miremadi & Yadollah Saboohi, 2018. "Planning for Investment in Energy Innovation: Developing an Analytical Tool to Explore the Impact of Knowledge Flow," International Journal of Energy Economics and Policy, Econjournals, vol. 8(2), pages 7-19.

    More about this item

    Keywords

    Energy-economy modelling; Emission trading; Technology spillovers;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:34:y:2012:i:4:p:624-646. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.