IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v114y2012i1p39-57.html
   My bibliography  Save this article

The value of technology and of its evolution towards a low carbon economy

Author

Listed:
  • Massimo Tavoni

    ()

  • Enrica Cian
  • Gunnar Luderer
  • Jan Steckel
  • Henri Waisman

Abstract

This paper assesses the economic value associated with the development of various low-carbon technologies in the context of climate stabilization. We analyze the impact of restrictions on the development of specific mitigation technologies, comparing three integrated assessment models used in the RECIPE comparison exercise. Our results indicate that the diversification of the carbon mitigation portfolio is an important determinant of the feasibility of climate policy. Foregoing specific low carbon technologies raises the cost of achieving the climate policy, though at different rates. CCS and renewables are shown to have the highest value, given their flexibility and wide coverage. The costs associated with technology failure are shown to be related to the role that each technology plays in the stabilization scenario, but also to the expectations about their technological progress. In particular, the costs of restriction of mature technologies can be partly compensated by more innovation and technological advancement. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Massimo Tavoni & Enrica Cian & Gunnar Luderer & Jan Steckel & Henri Waisman, 2012. "The value of technology and of its evolution towards a low carbon economy," Climatic Change, Springer, vol. 114(1), pages 39-57, September.
  • Handle: RePEc:spr:climat:v:114:y:2012:i:1:p:39-57
    DOI: 10.1007/s10584-011-0294-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-011-0294-3
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Davis, Graham A. & Owens, Brandon, 2003. "Optimizing the level of renewable electric R&D expenditures using real options analysis," Energy Policy, Elsevier, vol. 31(15), pages 1589-1608, December.
    2. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
    3. Olivier Sassi & Renaud Crassous & Jean-Charles Hourcade & Vincent Gitz & Henri Waisman & Celine Guivarch, 2010. "IMACLIM-R: a modelling framework to simulate sustainable development pathways," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 10(1/2), pages 5-24.
    4. Ottmar Edenhofer, Kai Lessmann, Claudia Kemfert, Michael Grubb and Jonathan Kohler, 2006. "Induced Technological Change: Exploring its Implications for the Economics of Atmospheric Stabilization: Synthesis Report from the Innovation Modeling Comparison Project," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 57-108.
    5. Nemet, Gregory F. & Kammen, Daniel M., 2007. "U.S. energy research and development: Declining investment, increasing need, and the feasibility of expansion," Energy Policy, Elsevier, vol. 35(1), pages 746-755, January.
    6. Clarke, Leon & Weyant, John & Edmonds, Jae, 2008. "On the sources of technological change: What do the models assume," Energy Economics, Elsevier, vol. 30(2), pages 409-424, March.
    7. Valentina Bosetti & Carlo Carraro & Massimo Tavoni, 2009. "Climate Policy after 2012," CESifo Economic Studies, CESifo, vol. 55(2), pages 235-254, June.
    8. Richels, Richard G. & Blanford, Geoffrey J., 2008. "The value of technological advance in decarbonizing the U.S. economy," Energy Economics, Elsevier, vol. 30(6), pages 2930-2946, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fujii, Hidemichi & Managi, Shunsuke, 2013. "Which industry is greener? An empirical study of nine industries in OECD countries," Energy Policy, Elsevier, vol. 57(C), pages 381-388.
    2. repec:eee:eneeco:v:64:y:2017:i:c:p:530-541 is not listed on IDEAS
    3. Bradford Griffin & Pierre Buisson & Patrick Criqui & Silvana Mima, 2014. "White Knights: will wind and solar come to the rescue of a looming capacity gap from nuclear phase-out or slow CCS start-up?," Climatic Change, Springer, vol. 123(3), pages 623-635, April.
    4. Gregory Nemet & Erin Baker & Bob Barron & Samuel Harms, 2015. "Characterizing the effects of policy instruments on the future costs of carbon capture for coal power plants," Climatic Change, Springer, vol. 133(2), pages 155-168, November.
    5. Ottmar Edenhofer & Susanne Kadner & Christoph von Stechow & Gregor Schwerhoff & Gunnar Luderer, 2014. "Linking climate change mitigation research to sustainable development," Chapters,in: Handbook of Sustainable Development, chapter 30, pages 476-499 Edward Elgar Publishing.
    6. Yunfa Zhu and Madanmohan Ghosh, 2014. "Impacts of Technology Uncertainty on Energy Use, Emission and Abatement Cost in USA: Simulation results from Environment Canada's Integrated Assessment Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    7. Guivarch, Céline & Monjon, Stéphanie, 2017. "Identifying the main uncertainty drivers of energy security in a low-carbon world: The case of Europe," Energy Economics, Elsevier, vol. 64(C), pages 530-541.
    8. Bi, Kexin & Huang, Ping & Wang, Xiangxiang, 2016. "Innovation performance and influencing factors of low-carbon technological innovation under the global value chain: A case of Chinese manufacturing industry," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 275-284.
    9. Criqui, P. & Mima, S. & Menanteau, P. & Kitous, A., 2015. "Mitigation strategies and energy technology learning: An assessment with the POLES model," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 119-136.
    10. Iyer, Gokul & Hultman, Nathan & Eom, Jiyong & McJeon, Haewon & Patel, Pralit & Clarke, Leon, 2015. "Diffusion of low-carbon technologies and the feasibility of long-term climate targets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 103-118.
    11. Enrica Cian & Samuel Carrara & Massimo Tavoni, 2014. "Innovation benefits from nuclear phase-out: can they compensate the costs?," Climatic Change, Springer, vol. 123(3), pages 637-650, April.
    12. Waisman, Henri & Rozenberg, Julie & Hourcade, Jean Charles, 2013. "Monetary compensations in climate policy through the lens of a general equilibrium assessment: The case of oil-exporting countries," Energy Policy, Elsevier, vol. 63(C), pages 951-961.
    13. Elmar Kriegler & Ioanna Mouratiadou & Gunnar Luderer & Jae Edmonds & Ottmar Edenhofer, 2016. "Introduction to the RoSE special issue on the impact of economic growth and fossil fuel availability on climate protection," Climatic Change, Springer, vol. 136(1), pages 1-6, May.
    14. Edenhofer, Ottmar & Hirth, Lion & Knopf, Brigitte & Pahle, Michael & Schlömer, Steffen & Schmid, Eva & Ueckerdt, Falko, 2013. "On the economics of renewable energy sources," Energy Economics, Elsevier, vol. 40(S1), pages 12-23.
    15. Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015. "Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
    16. Volker Krey, 2014. "Global energy-climate scenarios and models: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 363-383, July.
    17. Chen, Hong & Long, Ruyin & Niu, Wenjing & Feng, Qun & Yang, Ranran, 2014. "How does individual low-carbon consumption behavior occur? – An analysis based on attitude process," Applied Energy, Elsevier, vol. 116(C), pages 376-386.
    18. Witajewski-Baltvilks, Jan & Verdolini, Elena & Tavoni, Massimo, 2015. "Bending the learning curve," Energy Economics, Elsevier, vol. 52(S1), pages 86-99.
    19. Kriegler, Elmar & Riahi, Keywan & Bauer, Nico & Schwanitz, Valeria Jana & Petermann, Nils & Bosetti, Valentina & Marcucci, Adriana & Otto, Sander & Paroussos, Leonidas & Rao, Shilpa & Arroyo Currás, T, 2015. "Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 24-44.
    20. Marcucci, Adriana & Turton, Hal, 2015. "Induced technological change in moderate and fragmented climate change mitigation regimes," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 230-242.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:114:y:2012:i:1:p:39-57. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.