IDEAS home Printed from https://ideas.repec.org/p/fem/femwpa/2012.11.html
   My bibliography  Save this paper

Light Duty Vehicle Transportation and Global Climate Policy: The Importance of Electric Drive Vehicles

Author

Listed:
  • Valentina Bosetti

    (Fondazione Eni Enrico Mattei, Euro-Mediterranean Center for Climate Change)

  • Thomas Longden

    (Fondazione Eni Enrico Mattei, Euro-Mediterranean Center for Climate Change)

Abstract

With a focus on establishing whether climate targets can be met under different personal transport scenarios we introduce a transport sector representing the use and profile of light domestic vehicles (LDVs) into the integrated assessment model WITCH. In doing so we develop long term projections of light domestic vehicle use and define potential synergies between innovation in the transportation sector and the energy sector. By modelling the demand for LDVs, the use of fuels, and the types of vehicles introduced we can analyse the potential impacts on the whole economy. We find that with large increases in the use of vehicles in many regions around the globe, the electrification of LDVs is important in achieving cost effective climate targets and minimising the impact of transportation on other sectors of the economy.

Suggested Citation

  • Valentina Bosetti & Thomas Longden, 2012. "Light Duty Vehicle Transportation and Global Climate Policy: The Importance of Electric Drive Vehicles," Working Papers 2012.11, Fondazione Eni Enrico Mattei.
  • Handle: RePEc:fem:femwpa:2012.11
    as

    Download full text from publisher

    File URL: https://feem-media.s3.eu-central-1.amazonaws.com/wp-content/uploads/NDL2012-011.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Valentina Bosetti & Carlo Carraro & Marzio Galeotti & Emanuele Massetti & Massimo Tavoni, 2006. "WITCH. A World Induced Technical Change Hybrid Model," Working Papers 2006_46, Department of Economics, University of Venice "Ca' Foscari".
    2. Fiorese, Giulia & Catenacci, Michela & Verdolini, Elena & Bosetti, Valentina, 2013. "Advanced biofuels: Future perspectives from an expert elicitation survey," Energy Policy, Elsevier, vol. 56(C), pages 293-311.
    3. Olivier Sassi & Renaud Crassous & Jean-Charles Hourcade & Vincent Gitz & Henri Waisman & Celine Guivarch, 2010. "IMACLIM-R: a modelling framework to simulate sustainable development pathways," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 10(1/2), pages 5-24.
    4. Pietzcker, Robert C. & Longden, Thomas & Chen, Wenying & Fu, Sha & Kriegler, Elmar & Kyle, Page & Luderer, Gunnar, 2014. "Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models," Energy, Elsevier, vol. 64(C), pages 95-108.
    5. Malte Schwoon, 2006. "Learning-by-doing, Learning Spillovers and the Diffusion of Fuel Cell Vehicles," Working Papers FNU-112, Research unit Sustainability and Global Change, Hamburg University, revised Jun 2006.
    6. Ricardo J. Caballero & Adam B. Jaffe, 1993. "How High Are the Giants' Shoulders: An Empirical Assessment of Knowledge Spillovers and Creative Destruction in a Model of Economic Growth," NBER Chapters, in: NBER Macroeconomics Annual 1993, Volume 8, pages 15-86, National Bureau of Economic Research, Inc.
    7. Fulton, Lew & Cazzola, Pierpaolo & Cuenot, François, 2009. "IEA Mobility Model (MoMo) and its use in the ETP 2008," Energy Policy, Elsevier, vol. 37(10), pages 3758-3768, October.
    8. Bosetti, Valentina & Longden, Thomas, 2013. "Light duty vehicle transportation and global climate policy: The importance of electric drive vehicles," Energy Policy, Elsevier, vol. 58(C), pages 209-219.
    9. Inge Ivarsson & Claes Göran Alvstam, 2004. "International Technology Transfer to Local Suppliers by Volvo Trucks in India," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 95(1), pages 27-43, February.
    10. Schafer, Andreas & Victor, David G., 2000. "The future mobility of the world population," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(3), pages 171-205, April.
    11. Jamie Sanderson & Sardar M. N. Islam, 2007. "Climate Change and Economic Development," Palgrave Macmillan Books, Palgrave Macmillan, number 978-0-230-59012-0, June.
    12. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    13. Alban Kitous, Patrick Criqui, Elie Bellevrat and Bertrand Chateau, 2010. "Transformation Patterns of the Worldwide Energy System - Scenarios for the Century with the POLES Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    14. Dargay, Joyce & Gately, Dermot, 1999. "Income's effect on car and vehicle ownership, worldwide: 1960-2015," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(2), pages 101-138, February.
    15. Valentina Bosetti, Carlo Carraro, Marzio Galeotti, Emanuele Massetti, Massimo Tavoni, 2006. "A World induced Technical Change Hybrid Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 13-38.
    16. Valentina Bosetti & Emanuele Massetti & Massimo Tavoni, 2007. "The WITCH Model. Structure, Baseline, Solutions," Working Papers 2007.10, Fondazione Eni Enrico Mattei.
    17. Enrica De Cian & Valentina Bosetti & Alessandra Sgobbi & Massimo Tavoni, 2009. "The 2008 WITCH Model: New Model Features and Baseline," Working Papers 2009.85, Fondazione Eni Enrico Mattei.
    18. Richels, Richard G. & Blanford, Geoffrey J., 2008. "The value of technological advance in decarbonizing the U.S. economy," Energy Economics, Elsevier, vol. 30(6), pages 2930-2946, November.
    19. Catenacci, Michela & Verdolini, Elena & Bosetti, Valentina & Fiorese, Giulia, 2013. "Going electric: Expert survey on the future of battery technologies for electric vehicles," Energy Policy, Elsevier, vol. 61(C), pages 403-413.
    20. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    21. Meyer, I. & Leimbach, M. & Jaeger, C.C., 2007. "International passenger transport and climate change: A sector analysis in car demand and associated CO2 emissions from 2000 to 2050," Energy Policy, Elsevier, vol. 35(12), pages 6332-6345, December.
    22. Manne, Alan & Mendelsohn, Robert & Richels, Richard, 1995. "MERGE : A model for evaluating regional and global effects of GHG reduction policies," Energy Policy, Elsevier, vol. 23(1), pages 17-34, January.
    23. Ribeiro, Suzana K & Kobayashi, Shigeki & Beuthe, Michel & Gasca, Jorge & Greene, David & Lee, David S. & Muromachi, Yasunori & Newton, Peter J. & Plotkin, Steven & Sperling, Daniel & Wit, Ron & Zhou, , 2007. "Transportation and its Infrastructure," Institute of Transportation Studies, Working Paper Series qt98m5t1rv, Institute of Transportation Studies, UC Davis.
    24. Girod, Bastien & van Vuuren, Detlef P. & Deetman, Sebastiaan, 2012. "Global travel within the 2°C climate target," Energy Policy, Elsevier, vol. 45(C), pages 152-166.
    25. Kyle, Page & Kim, Son H., 2011. "Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands," Energy Policy, Elsevier, vol. 39(5), pages 3012-3024, May.
    26. Karathodorou, Niovi & Graham, Daniel J. & Noland, Robert B., 2010. "Estimating the effect of urban density on fuel demand," Energy Economics, Elsevier, vol. 32(1), pages 86-92, January.
    27. Thomas Longden, 2012. "Deviations in Kilometres Travelled: The Impact of Different Mobility Futures on Energy Use and Climate," Working Papers 2012.71, Fondazione Eni Enrico Mattei.
    28. Longden, Thomas, 2012. "Deviations in Kilometres Travelled: The Impact of Different Mobility Futures on Energy Use and Climate Policy," Climate Change and Sustainable Development 139086, Fondazione Eni Enrico Mattei (FEEM).
    29. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    30. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    31. Bastien Girod & Detlef Vuuren & Maria Grahn & Alban Kitous & Son Kim & Page Kyle, 2013. "Climate impact of transportation A model comparison," Climatic Change, Springer, vol. 118(3), pages 595-608, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
    2. Bosetti, Valentina & Longden, Thomas, 2013. "Light duty vehicle transportation and global climate policy: The importance of electric drive vehicles," Energy Policy, Elsevier, vol. 58(C), pages 209-219.
    3. Aryanpur, Vahid & Balyk, Olexandr & Daly, Hannah & Ó Gallachóir, Brian & Glynn, James, 2022. "Decarbonisation of passenger light-duty vehicles using spatially resolved TIMES-Ireland Model," Applied Energy, Elsevier, vol. 316(C).
    4. Longden, Thomas, 2014. "Travel intensity and climate policy: The influence of different mobility futures on the diffusion of battery integrated vehicles," Energy Policy, Elsevier, vol. 72(C), pages 219-234.
    5. Pietzcker, Robert C. & Longden, Thomas & Chen, Wenying & Fu, Sha & Kriegler, Elmar & Kyle, Page & Luderer, Gunnar, 2014. "Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models," Energy, Elsevier, vol. 64(C), pages 95-108.
    6. Anna Brdulak & Grażyna Chaberek & Jacek Jagodziński, 2020. "Determination of Electricity Demand by Personal Light Electric Vehicles (PLEVs): An Example of e-Motor Scooters in the Context of Large City Management in Poland," Energies, MDPI, vol. 13(1), pages 1-18, January.
    7. Emmerling, Johannes & Drouet, Laurent Drouet & Reis, Lara Aleluia & Bevione, Michela & Berger, Loic & Bosetti, Valentina & Carrara, Samuel & De Cian, Enrica & De Maere D'Aertrycke, Gauthier & Longden,, 2016. "The WITCH 2016 Model - Documentation and Implementation of the Shared Socioeconomic Pathways," MITP: Mitigation, Innovation and Transformation Pathways 240748, Fondazione Eni Enrico Mattei (FEEM).
    8. Carrara, Samuel & Marangoni, Giacomo, 2017. "Including system integration of variable renewable energies in a constant elasticity of substitution framework: The case of the WITCH model," Energy Economics, Elsevier, vol. 64(C), pages 612-626.
    9. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Georgios Zazias & Pantelis Capros, 2019. "Factors Influencing Electric Vehicle Penetration in the EU by 2030: A Model-Based Policy Assessment," Energies, MDPI, vol. 12(14), pages 1-25, July.
    10. Favero, Alice & Mendelsohn, Robert, 2013. "Evaluating the Global Role of Woody Biomass as a Mitigation Strategy," Climate Change and Sustainable Development 148929, Fondazione Eni Enrico Mattei (FEEM).
    11. Carraro, Carlo & Favero, Alice & Massetti, Emanuele, 2012. "“Investments and public finance in a green, low carbon, economy”," Energy Economics, Elsevier, vol. 34(S1), pages 15-28.
    12. Anders Skonhoft & Bjart Holtsmark, 2014. "The Norwegian support and subsidy of electric cars. Should it be adopted by other countries?," Working Paper Series 15814, Department of Economics, Norwegian University of Science and Technology.
    13. Alice Favero & Robert Mendelsohn, 2014. "Using Markets for Woody Biomass Energy to Sequester Carbon in Forests," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(1), pages 75-95.
    14. Hirte, Georg & Tscharaktschiew, Stefan, 2013. "The optimal subsidy on electric vehicles in German metropolitan areas: A spatial general equilibrium analysis," Energy Economics, Elsevier, vol. 40(C), pages 515-528.
    15. Zakerinia, Saleh, 2018. "Understanding the Role of Transportation in Meeting California’s Greenhouse Gas Emissions Reduction Target: A Focus on Technology Forcing Policies, Interactions with the Electric Sector and Mitigation," Institute of Transportation Studies, Working Paper Series qt0r69m651, Institute of Transportation Studies, UC Davis.
    16. Subramanian, Vignesh & Feijoo, Felipe & Sankaranarayanan, Sriram & Melendez, Kevin & Das, Tapas K., 2022. "A bilevel conic optimization model for routing and charging of EV fleets serving long distance delivery networks," Energy, Elsevier, vol. 251(C).
    17. Carrara, Samuel, 2020. "Reactor ageing and phase-out policies: global and regional prospects for nuclear power generation," Energy Policy, Elsevier, vol. 147(C).
    18. David McCollum & Volker Krey & Peter Kolp & Yu Nagai & Keywan Riahi, 2014. "Transport electrification: A key element for energy system transformation and climate stabilization," Climatic Change, Springer, vol. 123(3), pages 651-664, April.
    19. Dalla Chiara, Bruno & Deflorio, Francesco & Eid, Marco, 2019. "Analysis of real driving data to explore travelling needs in relation to hybrid–electric vehicle solutions," Transport Policy, Elsevier, vol. 80(C), pages 97-116.
    20. Daniele Lerede & Chiara Bustreo & Francesco Gracceva & Yolanda Lechón & Laura Savoldi, 2020. "Analysis of the Effects of Electrification of the Road Transport Sector on the Possible Penetration of Nuclear Fusion in the Long-Term European Energy Mix," Energies, MDPI, vol. 13(14), pages 1-25, July.
    21. Siskos, Pelopidas & Zazias, Georgios & Petropoulos, Apostolos & Evangelopoulou, Stavroula & Capros, Pantelis, 2018. "Implications of delaying transport decarbonisation in the EU: A systems analysis using the PRIMES model," Energy Policy, Elsevier, vol. 121(C), pages 48-60.
    22. Ou, Yang & Kittner, Noah & Babaee, Samaneh & Smith, Steven J. & Nolte, Christopher G. & Loughlin, Daniel H., 2021. "Evaluating long-term emission impacts of large-scale electric vehicle deployment in the US using a human-Earth systems model," Applied Energy, Elsevier, vol. 300(C).
    23. Thomas Longden, 2012. "Deviations in Kilometres Travelled: The Impact of Different Mobility Futures on Energy Use and Climate," Working Papers 2012.71, Fondazione Eni Enrico Mattei.
    24. Gray, Nathan & O'Shea, Richard & Smyth, Beatrice & Lens, Piet N.L. & Murphy, Jerry D., 2022. "What is the energy balance of electrofuels produced through power-to-fuel integration with biogas facilities?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    25. Cai, Yongxia & Woollacott, Jared & Beach, Robert H. & Rafelski, Lauren E. & Ramig, Christopher & Shelby, Michael, 2023. "Insights from adding transportation sector detail into an economy-wide model: The case of the ADAGE CGE model," Energy Economics, Elsevier, vol. 123(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Longden, Thomas, 2014. "Travel intensity and climate policy: The influence of different mobility futures on the diffusion of battery integrated vehicles," Energy Policy, Elsevier, vol. 72(C), pages 219-234.
    2. Pietzcker, Robert C. & Longden, Thomas & Chen, Wenying & Fu, Sha & Kriegler, Elmar & Kyle, Page & Luderer, Gunnar, 2014. "Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models," Energy, Elsevier, vol. 64(C), pages 95-108.
    3. Zhang, Runsen & Fujimori, Shinichiro & Dai, Hancheng & Hanaoka, Tatsuya, 2018. "Contribution of the transport sector to climate change mitigation: Insights from a global passenger transport model coupled with a computable general equilibrium model," Applied Energy, Elsevier, vol. 211(C), pages 76-88.
    4. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    5. Cai, Yongxia & Woollacott, Jared & Beach, Robert H. & Rafelski, Lauren E. & Ramig, Christopher & Shelby, Michael, 2023. "Insights from adding transportation sector detail into an economy-wide model: The case of the ADAGE CGE model," Energy Economics, Elsevier, vol. 123(C).
    6. Carlo Carraro & Enrica De Cian & Massimo Tavoni, 2009. "Human capital formation and global warming mitigation: evidence from an integrated assessment model," Working Papers 2009_30, Department of Economics, University of Venice "Ca' Foscari".
    7. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
    8. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Tavoni, Massimo, 2008. "International energy R&D spillovers and the economics of greenhouse gas atmospheric stabilization," Energy Economics, Elsevier, vol. 30(6), pages 2912-2929, November.
    9. Alice Favero & Robert Mendelsohn, 2013. "Evaluating the Global Role of Woody Biomass as a Mitigation Strategy," Working Papers 2013.37, Fondazione Eni Enrico Mattei.
    10. Erin Baker & Olaitan Olaleye & Lara Aleluia Reis, 2015. "Decision Frameworks and the Investment in R&D," Working Papers 2015.42, Fondazione Eni Enrico Mattei.
    11. Carraro, Carlo & Favero, Alice & Massetti, Emanuele, 2012. "“Investments and public finance in a green, low carbon, economy”," Energy Economics, Elsevier, vol. 34(S1), pages 15-28.
    12. Carraro, Carlo & Bosetti, Valentina & Massetti, Emanuele & Tavoni, Massimo, 2007. "Optimal Energy Investment and R&D Strategies to Stabilise Greenhouse Gas Atmospheric Concentrations," CEPR Discussion Papers 6549, C.E.P.R. Discussion Papers.
    13. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    14. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Sgobbi, Alessandra & Tavoni, Massimo, 2009. "Optimal energy investment and R&D strategies to stabilize atmospheric greenhouse gas concentrations," Resource and Energy Economics, Elsevier, vol. 31(2), pages 123-137, May.
    15. Carlo Carraro & Enrica De Cian & Massimo Tavoni, 2012. "Human Capital, Innovation, and Climate Policy: An Integrated Assessment," Working Papers 2012.18, Fondazione Eni Enrico Mattei.
    16. Alice Favero & Robert Mendelsohn, 2014. "Using Markets for Woody Biomass Energy to Sequester Carbon in Forests," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(1), pages 75-95.
    17. Thomas Longden, 2012. "Deviations in Kilometres Travelled: The Impact of Different Mobility Futures on Energy Use and Climate," Working Papers 2012.71, Fondazione Eni Enrico Mattei.
    18. Witajewski-Baltvilks, Jan & Verdolini, Elena & Tavoni, Massimo, 2017. "Induced technological change and energy efficiency improvements," Energy Economics, Elsevier, vol. 68(S1), pages 17-32.
    19. Daly, Hannah E. & Ramea, Kalai & Chiodi, Alessandro & Yeh, Sonia & Gargiulo, Maurizio & Gallachóir, Brian Ó, 2014. "Incorporating travel behaviour and travel time into TIMES energy system models," Applied Energy, Elsevier, vol. 135(C), pages 429-439.
    20. Emanuele Massetti & Lea Nicita, 2010. "The Optimal Climate Policy Portfolio when Knowledge Spills across Sectors," CESifo Working Paper Series 2988, CESifo.

    More about this item

    Keywords

    Light Duty Vehicles; Transportation; Climate Change Policy; Electric Drive Vehicles; Research and Development;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fem:femwpa:2012.11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alberto Prina Cerai (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.