IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Transportation and its Infrastructure

  • Ribeiro, Suzana K
  • Kobayashi, Shigeki
  • Beuthe, Michel
  • Gasca, Jorge
  • Greene, David
  • Lee, David S.
  • Muromachi, Yasunori
  • Newton, Peter J.
  • Plotkin, Steven
  • Sperling, Daniel
  • Wit, Ron
  • Zhou, Peter J
Registered author(s):

    Transport activity, a key component of economic development and human welfare, is increasing around the world as economies grow. For most policymakers, the most pressing problems associated with this increasing transport activity are traffic fatalities and injuries, congestion, air pollution and petroleum dependence. These problems are especially acute in the most rapidly growing economies of the developing world. Mitigating greenhouse gas (GHG) emissions can take its place among these other transport priorities by emphasizing synergies and co-benefits (high agreement, much evidence). Transport predominantly relies on a single fossil resource, petroleum that supplies 95% of the total energy used by world transport. In 2004, transport was responsible for 23% of world energy-related GHG emissions with about three quarters coming from road vehicles. Over the past decade, transport’s GHG emissions have increased at a faster rate than any other energy using sector (high agreement, much evidence). Transport activity will continue to increase in the future as economic growth fuels transport demand and the availability of transport drives development, by facilitating specialization and trade. The majority of the world’s population still does not have access to personal vehicles and many do not have access to any form of motorized transport. However, this situation is rapidly changing. Freight transport has been growing even more rapidly than passenger transport and is expected to continue to do so in the future. Urban freight movements are predominantly by truck, while international freight is dominated by ocean shipping. The modal distribution of intercity freight varies greatly across regions. For example, in the United States, all modes participate substantially, while in Europe, trucking has a higher market share (in tkm1), compared to rail (high agreement, much evidence). Transport activity is expected to grow robustly over the next several decades. Unless there is a major shift away from current patterns of energy use, world transport energy use is projected to increase at the rate of about 2% per year, with the highest rates of growth in the emerging economies, and total transport energy use and carbon emissions is projected to be about 80% higher than current levels by 2030 (medium agreement, medium evidence). There is an ongoing debate about whether the world is nearing a peak in conventional oil production that will require a significant and rapid transition to alternative energy resources. There is no shortage of alternative energy sources, including oil sands, shale oil, coal-to-liquids, biofuels, electricity and hydrogen. Among these alternatives, unconventional fossil carbon resources would produce less expensive fuels mostcompatible with the existing transport infrastructure, but lead to increased carbon emissions (medium agreement, medium evidence). In 2004, the transport sector produced 6.3 GtCO2 emissions (23% of world energy-related CO2 emissions) and its growth rate is highest among the end-user sectors. Road transport currently accounts for 74% of total transport CO2 emissions. The share of non-OECD countries is 36% now and will increase rapidly to 46% by 2030 if current trends continue (high agreement, much evidence). The transport sector also contributes small amounts of CH4 and N2O emissions from fuel combustion and F-gases (fluorinated gases) from vehicle air conditioning. CH4 emissions are between 0.1–0.3% of total transport GHG emissions, N2O between 2.0 and 2.8% (based on US, Japan and EU data only). Worldwide emissions of F-gases (CFC-12+HFC- 134a+HCFC-22) in 2003 were 0.3–0.6 GtCO2-eq, about 5–10% of total transport CO2 emissions (medium agreement, limited evidence). When assessing mitigation options it is important to consider their lifecycle GHG impacts. This is especially true for choices among alternative fuels but also applies to a lesser degree to the manufacturing processes and materials composition of advanced technologies. Electricity and hydrogen can offer the opportunity to ‘de-carbonise’ the transport energy system although the actual full cycle carbon reduction depends upon the way electricity and hydrogen are produced. Assessment of mitigation potential in the transport sector through the year 2030 is uncertain because the potential depends on: • World oil supply and its impact on fuel prices and the economic viability of alternative transport fuels; • R&D outcomes in several areas, especially biomass fuel production technology and its sustainability in massive scale, as well as battery longevity, cost and specific energy. Another problem for a credible assessment is the limited number and scope of available studies of mitigation potential and cost. Improving energy efficiency offers an excellent opportunity for transport GHG mitigation through 2030. Carbon emissions from ‘new’ light-duty road vehicles could be reduced by up to 50% by 2030 compared to currently produced models, assuming continued technological advances and strong policies to ensure that technologies are applied to increasing fuel economy rather than spent on increased horsepower and vehicle mass. Material substitution and advanced design could reduce the weight of light-duty vehicles by 20–30%. Since the TAR (Third Assessment Report), energy efficiency of road vehicles has improved by the market success of cleaner directinjection turbocharged (TDI) diesels and the continued market penetration of numerous incremental efficiency technologies. Hybrid vehicles have also played a role, though their market penetration is currently small. Reductions in drag coefficients of 20–50% seem achievable for heavy intercity trucks, with consequent reductions in fuel use of 10–20%. Hybrid technology is applicable to trucks and buses that operate in urban environments, and the diesel engine’s efficiency may be improved by 10% or more. Prospects for mitigation are strongly dependent on the advancement of transport technologies. There are also important opportunities to increase the operating efficiencies of transport vehicles. Road vehicle efficiency might be improved by 5–20% through strategies such as eco-driving styles, increased load factors, improved maintenance, in-vehicle technological aids, more efficient replacement tyres, reduced idling and better traffic management and route choice (medium agreement, medium evidence). The total mitigation potential in 2030 of the energy efficiency options applied to light duty vehicles would be around 0.7–0.8 GtCO2-eq in 2030 at costs

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.escholarship.org/uc/item/98m5t1rv.pdf;origin=repeccitec
    Download Restriction: no

    Paper provided by Institute of Transportation Studies, UC Davis in its series Institute of Transportation Studies, Working Paper Series with number qt98m5t1rv.

    as
    in new window

    Length:
    Date of creation: 01 Dec 2007
    Date of revision:
    Handle: RePEc:cdl:itsdav:qt98m5t1rv
    Contact details of provider: Postal: 2028 Academic Surge, One Shields Avenue, Davis, CA 95616
    Phone: (530) 752-6548
    Web page: http://www.escholarship.org/repec/itsdavis/Email:


    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt98m5t1rv. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lisa Schiff)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.