IDEAS home Printed from https://ideas.repec.org/r/spr/climat/v114y2012i1p39-57.html
   My bibliography  Save this item

The value of technology and of its evolution towards a low carbon economy

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Fujii, Hidemichi & Managi, Shunsuke, 2013. "Which industry is greener? An empirical study of nine industries in OECD countries," Energy Policy, Elsevier, vol. 57(C), pages 381-388.
  2. Awaworyi Churchill, Sefa & Inekwe, John & Smyth, Russell & Zhang, Xibin, 2019. "R&D intensity and carbon emissions in the G7: 1870–2014," Energy Economics, Elsevier, vol. 80(C), pages 30-37.
  3. Ottmar Edenhofer & Susanne Kadner & Christoph von Stechow & Gregor Schwerhoff & Gunnar Luderer, 2014. "Linking climate change mitigation research to sustainable development," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 30, pages 476-499, Edward Elgar Publishing.
  4. Yunfa Zhu and Madanmohan Ghosh, 2014. "Impacts of Technology Uncertainty on Energy Use, Emission and Abatement Cost in USA: Simulation results from Environment Canada's Integrated Assessment Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
  5. Antoine Mandel & Solmaria Halleck Vega & Dan-Xia Wang, 2020. "The contribution of technological diffusion to climate change mitigation: a network-based approach," Climatic Change, Springer, vol. 160(4), pages 609-620, June.
  6. Guivarch, Céline & Monjon, Stéphanie, 2017. "Identifying the main uncertainty drivers of energy security in a low-carbon world: The case of Europe," Energy Economics, Elsevier, vol. 64(C), pages 530-541.
  7. Bi, Kexin & Huang, Ping & Wang, Xiangxiang, 2016. "Innovation performance and influencing factors of low-carbon technological innovation under the global value chain: A case of Chinese manufacturing industry," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 275-284.
  8. Witajewski-Baltvilks, Jan & Verdolini, Elena & Tavoni, Massimo, 2015. "Bending the learning curve," Energy Economics, Elsevier, vol. 52(S1), pages 86-99.
  9. Enrica Cian & Samuel Carrara & Massimo Tavoni, 2014. "Innovation benefits from nuclear phase-out: can they compensate the costs?," Climatic Change, Springer, vol. 123(3), pages 637-650, April.
  10. Chengyu Fang & Wanyi Wang & Weidong Wang, 2023. "The Impact of Carbon Trading Policy on Breakthrough Low-Carbon Technological Innovation," Sustainability, MDPI, vol. 15(10), pages 1-13, May.
  11. Edenhofer, Ottmar & Hirth, Lion & Knopf, Brigitte & Pahle, Michael & Schlömer, Steffen & Schmid, Eva & Ueckerdt, Falko, 2013. "On the economics of renewable energy sources," Energy Economics, Elsevier, vol. 40(S1), pages 12-23.
  12. Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015. "Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
  13. Volker Krey, 2014. "Global energy-climate scenarios and models: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 363-383, July.
  14. Chen, Hong & Long, Ruyin & Niu, Wenjing & Feng, Qun & Yang, Ranran, 2014. "How does individual low-carbon consumption behavior occur? – An analysis based on attitude process," Applied Energy, Elsevier, vol. 116(C), pages 376-386.
  15. Enrica Cian & Valentina Bosetti & Massimo Tavoni, 2012. "Technology innovation and diffusion in “less than ideal” climate policies: An assessment with the WITCH model," Climatic Change, Springer, vol. 114(1), pages 121-143, September.
  16. Marcucci, Adriana & Turton, Hal, 2015. "Induced technological change in moderate and fragmented climate change mitigation regimes," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 230-242.
  17. Criqui, P. & Mima, S. & Menanteau, P. & Kitous, A., 2015. "Mitigation strategies and energy technology learning: An assessment with the POLES model," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 119-136.
  18. Wang, Yajun & Huang, Junbing, 2022. "Pathway to develop a low-carbon economy through energy-substitution technology in China," Energy, Elsevier, vol. 261(PA).
  19. Bradford Griffin & Pierre Buisson & Patrick Criqui & Silvana Mima, 2014. "White Knights: will wind and solar come to the rescue of a looming capacity gap from nuclear phase-out or slow CCS start-up?," Climatic Change, Springer, vol. 123(3), pages 623-635, April.
  20. Gregory Nemet & Erin Baker & Bob Barron & Samuel Harms, 2015. "Characterizing the effects of policy instruments on the future costs of carbon capture for coal power plants," Climatic Change, Springer, vol. 133(2), pages 155-168, November.
  21. Rida Waheed, 2022. "The Significance of Energy Factors, Green Economic Indicators, Blue Economic Aspects towards Carbon Intensity: A Study of Saudi Vision 2030," Sustainability, MDPI, vol. 14(11), pages 1-22, June.
  22. Hanna Obracht-Prondzyńska & Ewa Duda & Helena Anacka & Jolanta Kowal, 2022. "Greencoin as an AI-Based Solution Shaping Climate Awareness," IJERPH, MDPI, vol. 19(18), pages 1-25, September.
  23. Iyer, Gokul & Hultman, Nathan & Eom, Jiyong & McJeon, Haewon & Patel, Pralit & Clarke, Leon, 2015. "Diffusion of low-carbon technologies and the feasibility of long-term climate targets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 103-118.
  24. Waisman, Henri & Rozenberg, Julie & Hourcade, Jean Charles, 2013. "Monetary compensations in climate policy through the lens of a general equilibrium assessment: The case of oil-exporting countries," Energy Policy, Elsevier, vol. 63(C), pages 951-961.
  25. Elmar Kriegler & Ioanna Mouratiadou & Gunnar Luderer & Jae Edmonds & Ottmar Edenhofer, 2016. "Introduction to the RoSE special issue on the impact of economic growth and fossil fuel availability on climate protection," Climatic Change, Springer, vol. 136(1), pages 1-6, May.
  26. Hurlbert, Margot & Osazuwa-Peters, Mac, 2023. "Carbon capture and storage in Saskatchewan: An analysis of communicative practices in a contested technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
  27. Kriegler, Elmar & Riahi, Keywan & Bauer, Nico & Schwanitz, Valeria Jana & Petermann, Nils & Bosetti, Valentina & Marcucci, Adriana & Otto, Sander & Paroussos, Leonidas & Rao, Shilpa & Arroyo Currás, T, 2015. "Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 24-44.
  28. Guivarch, Celine & Monjon, Stéphanie, 2016. "Energy security in a low-carbon world: Identifying the main uncertain drivers of energy security in Europe," Conference papers 332807, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  29. Simon Cadez & Albert Czerny & Peter Letmathe, 2019. "Stakeholder pressures and corporate climate change mitigation strategies," Business Strategy and the Environment, Wiley Blackwell, vol. 28(1), pages 1-14, January.
  30. He, Xu & Sun, Shiquan & Leong, Lin Woon & Cong, Phan The & Abu-Rumman, Ayman & Halteh, Khaled, 2023. "Does clean energy and technological innovation matter for economic growth? An Asian countries perspective," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1195-1208.
  31. Oshiro, Ken & Fujimori, Shinichiro, 2022. "Role of hydrogen-based energy carriers as an alternative option to reduce residual emissions associated with mid-century decarbonization goals," Applied Energy, Elsevier, vol. 313(C).
  32. Yang, F. & Meerman, J.C. & Faaij, A.P.C., 2021. "Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.