IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i18p11183-d907971.html
   My bibliography  Save this article

Greencoin as an AI-Based Solution Shaping Climate Awareness

Author

Listed:
  • Hanna Obracht-Prondzyńska

    (Department of Spatial Management, University of Gdańsk, 80-309 Gdańsk, Poland)

  • Ewa Duda

    (Institute of Education, Maria Grzegorzewska University, 02-353 Warsaw, Poland)

  • Helena Anacka

    (Department of Economics, Faculty of Management and Economics, Gdańsk University of Technology, 80-233 Gdańsk, Poland)

  • Jolanta Kowal

    (Institute of Psychology, University of Wrocław, 50-137 Wrocław, Poland)

Abstract

Our research aim was to define possible AI-based solutions to be embedded in the Greencoin project, designed as a supportive tool for smart cities to achieve climate neutrality. We used Kamrowska-Załuska’s approach for evaluating AI-based solutions’ potential in urban planning. We narrowed down the research to the educational and economic aspects of smart cities. Furthermore, we used a systematic literature review. We propose solutions supporting the implementation process of net zero policies benefiting from single actions of urban dwellers based on the Greencoin project developed by us. By following smart city sectors, the paper introduces AI-based solutions which can enrich Greencoin by addressing the following needs: (1) shaping pro-environmental behaviors, (2) introducing instruments to reinforce the urban management process, (3) supporting bottom-up initiatives allowing to shape urban resilience, (4) enhancing smart mobility, (5) shaping local economies supporting urban circularity, and (6) allowing better communication with residents. Our research fills the gap in the limited group of studies focused on shaping climate awareness, enhancing smart governance, and supporting social participation and inclusion. It proves that AI-based educational tools can be supportive when implementing adaptation policies toward climate neutrality based on our proposed AI-based model shaping climate awareness.

Suggested Citation

  • Hanna Obracht-Prondzyńska & Ewa Duda & Helena Anacka & Jolanta Kowal, 2022. "Greencoin as an AI-Based Solution Shaping Climate Awareness," IJERPH, MDPI, vol. 19(18), pages 1-25, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11183-:d:907971
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/18/11183/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/18/11183/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Henning Wilts & Beatriz Riesco Garcia & Rebeca Guerra Garlito & Laura Saralegui Gómez & Elisabet González Prieto, 2021. "Artificial Intelligence in the Sorting of Municipal Waste as an Enabler of the Circular Economy," Resources, MDPI, vol. 10(4), pages 1-9, March.
    2. Massimo Tavoni & Enrica Cian & Gunnar Luderer & Jan Steckel & Henri Waisman, 2012. "The value of technology and of its evolution towards a low carbon economy," Climatic Change, Springer, vol. 114(1), pages 39-57, September.
    3. Falck, Oliver & Heimisch-Roecker, Alexandra & Wiederhold, Simon, 2021. "Returns to ICT skills," Research Policy, Elsevier, vol. 50(7).
    4. Min Zhang & Yufu Liu & Yixiong Xiao & Wenqi Sun & Chen Zhang & Yong Wang & Yuqi Bai, 2021. "Vulnerability and Resilience of Urban Traffic to Precipitation in China," IJERPH, MDPI, vol. 18(23), pages 1-13, November.
    5. Leonidas G. Anthopoulos, 2017. "Understanding Smart Cities: A Tool for Smart Government or an Industrial Trick?," Public Administration and Information Technology, Springer, number 978-3-319-57015-0, March.
    6. Michael Gusenbauer, 2019. "Google Scholar to overshadow them all? Comparing the sizes of 12 academic search engines and bibliographic databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 177-214, January.
    7. Nabeil Maflahi & Mike Thelwall, 2016. "When are readership counts as useful as citation counts? Scopus versus Mendeley for LIS journals," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(1), pages 191-199, January.
    8. Robert Goodspeed, 2015. "Smart cities: moving beyond urban cybernetics to tackle wicked problems," Cambridge Journal of Regions, Economy and Society, Cambridge Political Economy Society, vol. 8(1), pages 79-92.
    9. Jolanta Kowal & Alicja Keplinger & Juho Mäkiö, 2019. "Organizational citizenship behavior of IT professionals: lessons from Poland and Germany," Information Technology for Development, Taylor & Francis Journals, vol. 25(2), pages 227-249, April.
    10. Tan Yigitcanlar & Kevin C. Desouza & Luke Butler & Farnoosh Roozkhosh, 2020. "Contributions and Risks of Artificial Intelligence (AI) in Building Smarter Cities: Insights from a Systematic Review of the Literature," Energies, MDPI, vol. 13(6), pages 1-38, March.
    11. Ghasan Fahim Huseien & Kwok Wei Shah, 2021. "Potential Applications of 5G Network Technology for Climate Change Control: A Scoping Review of Singapore," Sustainability, MDPI, vol. 13(17), pages 1-26, August.
    12. Ikezoe, Keigo & Kiriyama, Eriko & Fujimura, Shuzo, 2021. "Analysis of car ownership motivation in Tokyo for sustainable mobility service and urban development," Transport Policy, Elsevier, vol. 114(C), pages 1-14.
    13. Steven Jige Quan & James Park & Athanassios Economou & Sugie Lee, 2019. "Artificial intelligence-aided design: Smart Design for sustainable city development," Environment and Planning B, , vol. 46(8), pages 1581-1599, October.
    14. Zawieska, Jakub & Pieriegud, Jana, 2018. "Smart city as a tool for sustainable mobility and transport decarbonisation," Transport Policy, Elsevier, vol. 63(C), pages 39-50.
    15. Jakub Zawieska & Hanna Obracht-Prondzyńska & Ewa Duda & Danuta Uryga & Małgorzata Romanowska, 2022. "In Search of the Innovative Digital Solutions Enhancing Social Pro-Environmental Engagement," Energies, MDPI, vol. 15(14), pages 1-18, July.
    16. Ricardo Vinuesa & Hossein Azizpour & Iolanda Leite & Madeline Balaam & Virginia Dignum & Sami Domisch & Anna Felländer & Simone Daniela Langhans & Max Tegmark & Francesco Fuso Nerini, 2020. "The role of artificial intelligence in achieving the Sustainable Development Goals," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    17. Ermal Hetemi & Joaquin Ordieres-Meré & Cali Nuur, 2020. "An Institutional Approach to Digitalization in Sustainability-Oriented Infrastructure Projects: The Limits of the Building Information Model," Sustainability, MDPI, vol. 12(9), pages 1-20, May.
    18. Sung-Lin Hsueh & Yue Sun & Min-Ren Yan, 2019. "Conceptualization and Development of a DFuzzy Model for Low-Carbon Ecocities," Sustainability, MDPI, vol. 11(20), pages 1-15, October.
    19. Tan Yigitcanlar & Federico Cugurullo, 2020. "The Sustainability of Artificial Intelligence: An Urbanistic Viewpoint from the Lens of Smart and Sustainable Cities," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    20. Dorota Kamrowska-Zaluska & Hanna Obracht-Prondzyńska, 2018. "The Use of Big Data in Regenerative Planning," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanna Obracht-Prondzyńska & Kacper Radziszewski & Helena Anacka & Ewa Duda & Magdalena Walnik & Kacper Wereszko & Hanne Cecilie Geirbo, 2023. "Codesigned Digital Tools for Social Engagement in Climate Change Mitigation," Sustainability, MDPI, vol. 15(24), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan Yigitcanlar & Rashid Mehmood & Juan M. Corchado, 2021. "Green Artificial Intelligence: Towards an Efficient, Sustainable and Equitable Technology for Smart Cities and Futures," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    2. Tan Yigitcanlar, 2021. "Greening the Artificial Intelligence for a Sustainable Planet: An Editorial Commentary," Sustainability, MDPI, vol. 13(24), pages 1-9, December.
    3. Tan Yigitcanlar & Federico Cugurullo, 2020. "The Sustainability of Artificial Intelligence: An Urbanistic Viewpoint from the Lens of Smart and Sustainable Cities," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    4. Henrik Skaug Sætra, 2021. "AI in Context and the Sustainable Development Goals: Factoring in the Unsustainability of the Sociotechnical System," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    5. Palmyra Repette & Jamile Sabatini-Marques & Tan Yigitcanlar & Denilson Sell & Eduardo Costa, 2021. "The Evolution of City-as-a-Platform: Smart Urban Development Governance with Collective Knowledge-Based Platform Urbanism," Land, MDPI, vol. 10(1), pages 1-25, January.
    6. Seng Boon Lim & Jalaluddin Abdul Malek & Md Farabi Yussoff Md Yussoff & Tan Yigitcanlar, 2021. "Understanding and Acceptance of Smart City Policies: Practitioners’ Perspectives on the Malaysian Smart City Framework," Sustainability, MDPI, vol. 13(17), pages 1-31, August.
    7. Li, Wenda & Yigitcanlar, Tan & Liu, Aaron & Erol, Isil, 2022. "Mapping two decades of smart home research: A systematic scientometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    8. Tao Li & Junlin Zhu & Jianqiang Luo & Chaonan Yi & Baoqing Zhu, 2023. "Breaking Triopoly to Achieve Sustainable Smart Digital Infrastructure Based on Open-Source Diffusion Using Government–Platform–User Evolutionary Game," Sustainability, MDPI, vol. 15(19), pages 1-24, October.
    9. D’Amico, Gaspare & Arbolino, Roberta & Shi, Lei & Yigitcanlar, Tan & Ioppolo, Giuseppe, 2022. "Digitalisation driven urban metabolism circularity: A review and analysis of circular city initiatives," Land Use Policy, Elsevier, vol. 112(C).
    10. Lena Bjørlo & Øystein Moen & Mark Pasquine, 2021. "The Role of Consumer Autonomy in Developing Sustainable AI: A Conceptual Framework," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    11. Christina Kakderi & Eleni Oikonomaki & Ilektra Papadaki, 2021. "Smart and Resilient Urban Futures for Sustainability in the Post COVID-19 Era: A Review of Policy Responses on Urban Mobility," Sustainability, MDPI, vol. 13(11), pages 1-21, June.
    12. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    13. Sanaz Honarmand Ebrahimi & Marinus Ossewaarde & Ariana Need, 2021. "Smart Fishery: A Systematic Review and Research Agenda for Sustainable Fisheries in the Age of AI," Sustainability, MDPI, vol. 13(11), pages 1-20, May.
    14. Henrik Skaug Sætra, 2021. "A Framework for Evaluating and Disclosing the ESG Related Impacts of AI with the SDGs," Sustainability, MDPI, vol. 13(15), pages 1-16, July.
    15. Fabio De Felice & Marta Travaglioni & Antonella Petrillo, 2021. "Innovation Trajectories for a Society 5.0," Data, MDPI, vol. 6(11), pages 1-30, November.
    16. Gaspare D’Amico & Roberta Arbolino & Lei Shi & Tan Yigitcanlar & Giuseppe Ioppolo, 2021. "Digital Technologies for Urban Metabolism Efficiency: Lessons from Urban Agenda Partnership on Circular Economy," Sustainability, MDPI, vol. 13(11), pages 1-23, May.
    17. Dorota Kamrowska-Załuska, 2021. "Impact of AI-Based Tools and Urban Big Data Analytics on the Design and Planning of Cities," Land, MDPI, vol. 10(11), pages 1-19, November.
    18. Fujii, Hidemichi & Managi, Shunsuke, 2013. "Which industry is greener? An empirical study of nine industries in OECD countries," Energy Policy, Elsevier, vol. 57(C), pages 381-388.
    19. Emil Velinov & Milan Maly & Yelena Petrenko & Igor Denisov & Vasko Vassilev, 2020. "The Role of Top Management Team Digitalization and Firm Internationalization for Sustainable Business," Sustainability, MDPI, vol. 12(22), pages 1-11, November.
    20. Xi Liu & Yugang He & Renhong Wu, 2024. "Revolutionizing Environmental Sustainability: The Role of Renewable Energy Consumption and Environmental Technologies in OECD Countries," Energies, MDPI, vol. 17(2), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11183-:d:907971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.