IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v90y2015ipap230-242.html
   My bibliography  Save this article

Induced technological change in moderate and fragmented climate change mitigation regimes

Author

Listed:
  • Marcucci, Adriana
  • Turton, Hal

Abstract

Climate change mitigation efforts are currently characterized by a lack of globally coordinated measures and predominantly moderate regional action. This paper compares the results from different Integrated Assessment Models to analyze the impact of such moderate climate change mitigation actions on electricity technology deployment and development, along with the impact of first movers taking stringent unilateral action-specifically, the EU and an EU-plus-China coalition. We find that a fragmented regime with moderate climate and technology targets produces significant emission reductions and changes in the adoption of electricity technologies towards low-carbon alternatives, promoting global technology change. The adoption of more stringent policies by the first movers implies a further transformation of their electricity sectors, but technology deployment outside the coalition is not significantly affected. Furthermore, the results in some models show (1) that first movers can benefit from early action by increased access to low-carbon energy carriers and (2) that delayed action implies the lock-in of carbon-intensive technologies leading to a slower transformation of the electricity sector later.

Suggested Citation

  • Marcucci, Adriana & Turton, Hal, 2015. "Induced technological change in moderate and fragmented climate change mitigation regimes," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 230-242.
  • Handle: RePEc:eee:tefoso:v:90:y:2015:i:pa:p:230-242
    DOI: 10.1016/j.techfore.2013.10.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004016251300303X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bertrand Magne, Socrates Kypreos, and Hal Turton, 2010. "Technology Options for Low Stabilization Pathways with MERGE," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    2. Sheila M. Olmstead & Robert N. Stavins, 2006. "An International Policy Architecture for the Post-Kyoto Era," American Economic Review, American Economic Association, vol. 96(2), pages 35-38, May.
    3. Dechezleprêtre, Antoine & Glachant, Matthieu & Ménière, Yann, 2008. "The Clean Development Mechanism and the international diffusion of technologies: An empirical study," Energy Policy, Elsevier, vol. 36(4), pages 1273-1283, April.
    4. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    5. Kriegler, Elmar & Riahi, Keywan & Bauer, Nico & Schwanitz, Valeria Jana & Petermann, Nils & Bosetti, Valentina & Marcucci, Adriana & Otto, Sander & Paroussos, Leonidas & Rao, Shilpa & Arroyo Currás, T, 2015. "Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 24-44.
    6. Massimo Tavoni & Enrica Cian & Gunnar Luderer & Jan Steckel & Henri Waisman, 2012. "The value of technology and of its evolution towards a low carbon economy," Climatic Change, Springer, vol. 114(1), pages 39-57, September.
    7. Kriegler, Elmar & Petermann, Nils & Krey, Volker & Schwanitz, Valeria Jana & Luderer, Gunnar & Ashina, Shuichi & Bosetti, Valentina & Eom, Jiyong & Kitous, Alban & Méjean, Aurélie & Paroussos, Leonida, 2015. "Diagnostic indicators for integrated assessment models of climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 45-61.
    8. Valentina Bosetti & Enrica De Cian, 2013. "A Good Opening: The Key to Make the Most of Unilateral Climate Action," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(2), pages 255-276, October.
    9. Valentina Bosetti & Carlo Carraro & Massimo Tavoni, 2009. "Climate Change Mitigation Strategies in Fast-Growing Countries: The Benefits of Early Action," CESifo Working Paper Series 2742, CESifo Group Munich.
    10. Blanford, Geoffrey J., 2009. "R&D investment strategy for climate change," Energy Economics, Elsevier, vol. 31(Supplemen), pages 27-36.
    11. J. Edmonds & L. Clarke & J. Lurz & M. Wise, 2008. "Stabilizing CO 2 concentrations with incomplete international cooperation," Climate Policy, Taylor & Francis Journals, vol. 8(4), pages 355-376, July.
    12. Clarke, Leon & Weyant, John & Edmonds, Jae, 2008. "On the sources of technological change: What do the models assume," Energy Economics, Elsevier, vol. 30(2), pages 409-424, March.
    13. Böhringer, Christoph & Balistreri, Edward J. & Rutherford, Thomas F., 2012. "The role of border carbon adjustment in unilateral climate policy: Overview of an Energy Modeling Forum study (EMF 29)," Energy Economics, Elsevier, vol. 34(S2), pages 97-110.
    14. Ad Seebregts & Tom Kram & Gerrit Jan Schaeffer & Alexandra Bos, 2000. "Endogenous learning and technology clustering: analysis with MARKAL model of the Western European energy system," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 14(1/2/3/4), pages 289-319.
    15. repec:reg:rpubli:353 is not listed on IDEAS
    16. Schneider, Malte & Holzer, Andreas & Hoffmann, Volker H., 2008. "Understanding the CDM's contribution to technology transfer," Energy Policy, Elsevier, vol. 36(8), pages 2920-2928, August.
    17. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    18. Kypreos, Socrates & Turton, Hal, 2011. "Climate change scenarios and Technology Transfer Protocols," Energy Policy, Elsevier, vol. 39(2), pages 844-853, February.
    19. Nikolaos Kouvaritakis & Antonio Soria & Stephane Isoard, 2000. "Modelling energy technology dynamics: methodology for adaptive expectations models with learning by doing and learning by searching," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 14(1/2/3/4), pages 104-115.
    20. Michael Jakob & Gunnar Luderer & Jan Steckel & Massimo Tavoni & Stephanie Monjon, 2012. "Time to act now? Assessing the costs of delaying climate measures and benefits of early action," Climatic Change, Springer, vol. 114(1), pages 79-99, September.
    21. Keppo, Ilkka & Strubegger, Manfred, 2010. "Short term decisions for long term problems – The effect of foresight on model based energy systems analysis," Energy, Elsevier, vol. 35(5), pages 2033-2042.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:energy:v:143:y:2018:i:c:p:812-821 is not listed on IDEAS
    2. Marcucci, Adriana & Fragkos, Panagiotis, 2015. "Drivers of regional decarbonization through 2100: A multi-model decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 111-124.
    3. repec:eee:rensus:v:77:y:2017:i:c:p:525-535 is not listed on IDEAS
    4. Liu, Lu & Hejazi, Mohamad & Patel, Pralit & Kyle, Page & Davies, Evan & Zhou, Yuyu & Clarke, Leon & Edmonds, James, 2015. "Water demands for electricity generation in the U.S.: Modeling different scenarios for the water–energy nexus," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 318-334.
    5. Kriegler, Elmar & Riahi, Keywan & Bauer, Nico & Schwanitz, Valeria Jana & Petermann, Nils & Bosetti, Valentina & Marcucci, Adriana & Otto, Sander & Paroussos, Leonidas & Rao, Shilpa & Arroyo Currás, T, 2015. "Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 24-44.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:90:y:2015:i:pa:p:230-242. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.