IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v51y2015icp111-124.html
   My bibliography  Save this article

Drivers of regional decarbonization through 2100: A multi-model decomposition analysis

Author

Listed:
  • Marcucci, Adriana
  • Fragkos, Panagiotis

Abstract

This study explores short and long-term drivers of alternative decarbonization pathways in four major economies (China, India, Europe and USA), using a multi-model decomposition analysis. The paper focuses on determining the energy system transformations that drive the changes in carbon emissions and identifying the model characteristics that lead to differences in the decarbonization strategies. First, we compare the decomposition over time of near-past carbon emissions and near-future model projections as a methodology to validate baseline scenarios. We show that a no-policy baseline scenario is in line with historical trends for all regions except China, where all models project higher improvements in energy and carbon intensity than the near-past historical development. Second, we compare regional decarbonization drivers across models in a scenario with moderate policy targets that represent the current fragmented international climate policy landscape. The results from the different models show that energy efficiency improvements represent the main strategy in achieving the moderate climate targets. Finally, we develop an LMDI decomposition analysis to determine the additional energy system changes needed to achieve a global GHG concentration target of 450ppm compared to the moderate policy case. In all models, reducing regional carbon intensity of energy is the major decarbonization strategy after 2030. In the long-term (after 2050), most of the models find that negative carbon emissions are critical in such scenario, emphasizing the key role of biomass with CCS. However, the level of contribution of the decarbonization factor varies significantly across models, due to the large uncertainty in the availability of renewables and the development of CCS technologies. Overall, we find that the main differences in the decomposition results across models are due to assumptions concerning availability of natural resources and variety of backstop technologies.

Suggested Citation

  • Marcucci, Adriana & Fragkos, Panagiotis, 2015. "Drivers of regional decarbonization through 2100: A multi-model decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 111-124.
  • Handle: RePEc:eee:eneeco:v:51:y:2015:i:c:p:111-124
    DOI: 10.1016/j.eneco.2015.06.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988315001838
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Marcucci, Adriana & Turton, Hal, 2015. "Induced technological change in moderate and fragmented climate change mitigation regimes," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 230-242.
    3. Bosetti, Valentina & Tavoni, Massimo & Carraro, Carlo, 2009. "Climate Change Mitigation Strategies in Fast-Growing Countries: The Benefits of Early Action," Sustainable Development Papers 52541, Fondazione Eni Enrico Mattei (FEEM).
    4. van Vuuren, Detlef P. & van Vliet, Jasper & Stehfest, Elke, 2009. "Future bio-energy potential under various natural constraints," Energy Policy, Elsevier, vol. 37(11), pages 4220-4230, November.
    5. Agnolucci, Paolo & Ekins, Paul & Iacopini, Giorgia & Anderson, Kevin & Bows, Alice & Mander, Sarah & Shackley, Simon, 2009. "Different scenarios for achieving radical reduction in carbon emissions: A decomposition analysis," Ecological Economics, Elsevier, vol. 68(6), pages 1652-1666, April.
    6. Bauer, Nico & Bosetti, Valentina & Hamdi-Cherif, Meriem & Kitous, Alban & McCollum, David & Méjean, Aurélie & Rao, Shilpa & Turton, Hal & Paroussos, Leonidas & Ashina, Shuichi & Calvin, Katherine & Wa, 2015. "CO2 emission mitigation and fossil fuel markets: Dynamic and international aspects of climate policies," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 243-256.
    7. Lilliestam, Johan & Bielicki, Jeffrey M. & Patt, Anthony G., 2012. "Comparing carbon capture and storage (CCS) with concentrating solar power (CSP): Potentials, costs, risks, and barriers," Energy Policy, Elsevier, vol. 47(C), pages 447-455.
    8. Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015. "Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
    9. Kesicki, Fabian & Anandarajah, Gabrial, 2011. "The role of energy-service demand reduction in global climate change mitigation: Combining energy modelling and decomposition analysis," Energy Policy, Elsevier, vol. 39(11), pages 7224-7233.
    10. Kriegler, Elmar & Petermann, Nils & Krey, Volker & Schwanitz, Valeria Jana & Luderer, Gunnar & Ashina, Shuichi & Bosetti, Valentina & Eom, Jiyong & Kitous, Alban & Méjean, Aurélie & Paroussos, Leonida, 2015. "Diagnostic indicators for integrated assessment models of climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 45-61.
    11. Böhringer, Christoph & Fischer, Carolyn & Rosendahl, Knut Einar, 2014. "Cost-effective unilateral climate policy design: Size matters," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 318-339.
    12. Schwanitz, Valeria Jana & Longden, Thomas & Knopf, Brigitte & Capros, Pantelis, 2015. "The implications of initiating immediate climate change mitigation — A potential for co-benefits?," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 166-177.
    13. Böhringer, Christoph & Balistreri, Edward J. & Rutherford, Thomas F., 2012. "The role of border carbon adjustment in unilateral climate policy: Overview of an Energy Modeling Forum study (EMF 29)," Energy Economics, Elsevier, vol. 34(S2), pages 97-110.
    14. Hannah Förster & Katja Schumacher & Enrica De Cian & Michael Hübler & Ilkka Keppo & Silvana Mima & Ronald D. Sands, 2013. "European Energy Efficiency And Decarbonization Strategies Beyond 2030 — A Sectoral Multi-Model Decomposition," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-29.
    15. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    16. Fisher-Vanden, Karen & Schu, Kathryn & Sue Wing, Ian & Calvin, Katherine, 2012. "Decomposing the impact of alternative technology sets on future carbon emissions growth," Energy Economics, Elsevier, vol. 34(S3), pages 359-365.
    17. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    18. Kawase, Reina & Matsuoka, Yuzuru & Fujino, Junichi, 2006. "Decomposition analysis of CO2 emission in long-term climate stabilization scenarios," Energy Policy, Elsevier, vol. 34(15), pages 2113-2122, October.
    19. Paroussos, Leonidas & Fragkos, Panagiotis & Capros, Pantelis & Fragkiadakis, Kostas, 2015. "Assessment of carbon leakage through the industry channel: The EU perspective," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 204-219.
    20. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    21. Kriegler, Elmar & Riahi, Keywan & Bauer, Nico & Schwanitz, Valeria Jana & Petermann, Nils & Bosetti, Valentina & Marcucci, Adriana & Otto, Sander & Paroussos, Leonidas & Rao, Shilpa & Arroyo Currás, T, 2015. "Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 24-44.
    22. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    23. Tatsuya Hanaoka & Mikiko Kainuma & Reina Kawase & Yuzuru Matsuoka, 2006. "Emissions scenarios database and regional mitigation analysis: a review of post-TAR mitigation scenarios," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(3), pages 367-389, September.
    24. Ang, B.W. & Liu, Na, 2007. "Energy decomposition analysis: IEA model versus other methods," Energy Policy, Elsevier, vol. 35(3), pages 1426-1432, March.
    25. G. Boyd & J. F. McDonald & M. Ross & D. A. Hansont, 1987. "Separating the Changing Composition of U.S. Manufacturing Production from Energy Efficiency Improvements: A Divisia Index Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-96.
    26. James G. Baldwin & Ian Sue Wing, 2013. "The Spatiotemporal Evolution Of U.S. Carbon Dioxide Emissions: Stylized Facts And Implications For Climate Policy," Journal of Regional Science, Wiley Blackwell, vol. 53(4), pages 672-689, October.
    27. Blanford, Geoffrey J. & Rose, Steven K. & Tavoni, Massimo, 2012. "Baseline projections of energy and emissions in Asia," Energy Economics, Elsevier, vol. 34(S3), pages 284-292.
    28. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    29. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    30. Choi, Ki-Hong & Ang, B.W., 2012. "Attribution of changes in Divisia real energy intensity index — An extension to index decomposition analysis," Energy Economics, Elsevier, vol. 34(1), pages 171-176.
    31. Nebojša Nakićenović & Nadejda Victor & Tsuneyuki Morita, 1998. "Emissions Scenarios Database and Review of Scenarios," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 3(2), pages 95-131, December.
    32. Eom, Jiyong & Edmonds, Jae & Krey, Volker & Johnson, Nils & Longden, Thomas & Luderer, Gunnar & Riahi, Keywan & Van Vuuren, Detlef P., 2015. "The impact of near-term climate policy choices on technology and emission transition pathways," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 73-88.
    33. Ang, B.W. & Liu, Na, 2007. "Negative-value problems of the logarithmic mean Divisia index decomposition approach," Energy Policy, Elsevier, vol. 35(1), pages 739-742, January.
    34. Valentina Bosetti & Enrica De Cian, 2013. "A Good Opening: The Key to Make the Most of Unilateral Climate Action," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(2), pages 255-276, October.
    35. Bin Su & B. W. Ang, 2012. "Structural Decomposition Analysis Applied To Energy And Emissions: Aggregation Issues," Economic Systems Research, Taylor & Francis Journals, vol. 24(3), pages 299-317, March.
    36. Boyd, Gale A. & Hanson, Donald A. & Sterner, Thomas, 1988. "Decomposition of changes in energy intensity : A comparison of the Divisia index and other methods," Energy Economics, Elsevier, vol. 10(4), pages 309-312, October.
    37. Margarida R. Alves & Victor Moutinho, 2013. "Decomposition analysis for energy-related CO2 emissions intensity over 1996-2009 in Portuguese Industrial Sectors," CEFAGE-UE Working Papers 2013_10, University of Evora, CEFAGE-UE (Portugal).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuhuan Zhao & Hao Li & Zhonghua Zhang & Yongfeng Zhang & Song Wang & Ya Liu, 2017. "Decomposition and scenario analysis of CO2 emissions in China’s power industry: based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 645-668, March.
    2. repec:spr:climat:v:144:y:2017:i:2:d:10.1007_s10584-017-2051-8 is not listed on IDEAS
    3. repec:gam:jeners:v:11:y:2018:i:11:p:2985-:d:179818 is not listed on IDEAS
    4. repec:gam:jeners:v:11:y:2018:i:11:p:3001-:d:179949 is not listed on IDEAS
    5. Mathy, Sandrine & Menanteau, Philippe & Criqui, Patrick, 2018. "After the Paris Agreement: Measuring the Global Decarbonization Wedges From National Energy Scenarios," Ecological Economics, Elsevier, vol. 150(C), pages 273-289.
    6. repec:gam:jsusta:v:10:y:2018:i:2:p:344-:d:129202 is not listed on IDEAS
    7. repec:gam:jsusta:v:11:y:2019:i:8:p:2448-:d:225926 is not listed on IDEAS
    8. repec:eee:enepol:v:107:y:2017:i:c:p:11-26 is not listed on IDEAS
    9. Fragkos, Panagiotis & Tasios, Nikos & Paroussos, Leonidas & Capros, Pantelis & Tsani, Stella, 2017. "Energy system impacts and policy implications of the European Intended Nationally Determined Contribution and low-carbon pathway to 2050," Energy Policy, Elsevier, vol. 100(C), pages 216-226.
    10. Bowen Xiao & Dongxiao Niu & Xiaodan Guo, 2016. "The Driving Forces of Changes in CO 2 Emissions in China: A Structural Decomposition Analysis," Energies, MDPI, Open Access Journal, vol. 9(4), pages 1-17, March.
    11. repec:gam:jeners:v:9:y:2016:i:4:p:259:d:67071 is not listed on IDEAS
    12. repec:eee:enepol:v:118:y:2018:i:c:p:462-473 is not listed on IDEAS
    13. Baležentis, Tomas & Streimikiene, Dalia, 2017. "Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation," Applied Energy, Elsevier, vol. 185(P1), pages 862-871.

    More about this item

    Keywords

    Regional decomposition analysis; Model inter-comparison; Climate change mitigation pathways; Backstop technologies;

    JEL classification:

    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:51:y:2015:i:c:p:111-124. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.