IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v107y2017icp11-26.html
   My bibliography  Save this article

Transition and transformation: A review of the concept of change in the progress towards future sustainable energy systems

Author

Listed:
  • Child, Michael
  • Breyer, Christian

Abstract

It seems generally accepted that change will occur in global energy systems. There also appears to be consensus on the kinds of changes that may possible for the future, even though there may be disagreement over the exact mix of technologies and policies needed to increase sustainability or mitigate climate change. The terms transition and transformation have both been used to denote the type of change needed in large socio-technical systems. However, the terms have been used both in contradiction of each other and synonymously by different authors. A comprehensive review of both theory and usage in scientific publications was conducted to determine if the terms have been used to denote fundamentally different concepts and if the concept of change is framed differently by usage so as to affect understanding. Despite two camps being readily identifiable, it was concluded that the terms generally refer to the same fundamental concept. At the same time, framing of the concept can be viewed as somewhat different, resulting in a potential for confusion on the part of the reader that may detract from achieving the outcome of change. It is suggested that change to physical forms and systems be denoted as transformations, and that changes to large socio-technical systems be denoted as transitions when the focus is on a higher order of change that highlights the ways that society motivates, facilitates, and benefits from change.

Suggested Citation

  • Child, Michael & Breyer, Christian, 2017. "Transition and transformation: A review of the concept of change in the progress towards future sustainable energy systems," Energy Policy, Elsevier, vol. 107(C), pages 11-26.
  • Handle: RePEc:eee:enepol:v:107:y:2017:i:c:p:11-26
    DOI: 10.1016/j.enpol.2017.04.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517302471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.04.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, Jiahai & Xu, Yan & Hu, Zhen & Yu, Zhongfu & Liu, Jiangyan & Hu, Zhaoguang & Xu, Ming, 2012. "Managing electric power system transition in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5660-5677.
    2. Hong, Lixuan & Zhou, Nan & Fridley, David & Raczkowski, Chris, 2013. "Assessment of China's renewable energy contribution during the 12th Five Year Plan," Energy Policy, Elsevier, vol. 62(C), pages 1533-1543.
    3. Chai, Qimin & Zhang, Xiliang, 2010. "Technologies and policies for the transition to a sustainable energy system in china," Energy, Elsevier, vol. 35(10), pages 3995-4002.
    4. Stenzel, Till & Frenzel, Alexander, 2008. "Regulating technological change--The strategic reactions of utility companies towards subsidy policies in the German, Spanish and UK electricity markets," Energy Policy, Elsevier, vol. 36(7), pages 2645-2657, July.
    5. Butler, C. & Demski, C. & Parkhill, K. & Pidgeon, N. & Spence, A., 2015. "Public values for energy futures: Framing, indeterminacy and policy making," Energy Policy, Elsevier, vol. 87(C), pages 665-672.
    6. Morlet, Clémence & Keirstead, James, 2013. "A comparative analysis of urban energy governance in four European cities," Energy Policy, Elsevier, vol. 61(C), pages 852-863.
    7. Jacobsson, Staffan & Lauber, Volkmar, 2006. "The politics and policy of energy system transformation--explaining the German diffusion of renewable energy technology," Energy Policy, Elsevier, vol. 34(3), pages 256-276, February.
    8. Winskel, Mark & Radcliffe, Jonathan & Skea, Jim & Wang, Xinxin, 2014. "Remaking the UK's energy technology innovation system: From the margins to the mainstream," Energy Policy, Elsevier, vol. 68(C), pages 591-602.
    9. Zhang, Xiliang & Ruoshui, Wang & Molin, Huo & Martinot, Eric, 2010. "A study of the role played by renewable energies in China's sustainable energy supply," Energy, Elsevier, vol. 35(11), pages 4392-4399.
    10. Huberty, Mark & Zysman, John, 2010. "An energy system transformation: Framing research choices for the climate challenge," Research Policy, Elsevier, vol. 39(8), pages 1027-1029, October.
    11. Peter Andreasen, Kristian & Sovacool, Benjamin K., 2014. "Energy sustainability, stakeholder conflicts, and the future of hydrogen in Denmark," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 891-897.
    12. Chowdhury, Sanjeeda & Sumita, Ushio & Islam, Ashraful & Bedja, Idriss, 2014. "Importance of policy for energy system transformation: Diffusion of PV technology in Japan and Germany," Energy Policy, Elsevier, vol. 68(C), pages 285-293.
    13. Eom, Jiyong & Edmonds, Jae & Krey, Volker & Johnson, Nils & Longden, Thomas & Luderer, Gunnar & Riahi, Keywan & Van Vuuren, Detlef P., 2015. "The impact of near-term climate policy choices on technology and emission transition pathways," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 73-88.
    14. Foxon, Timothy J. & Pearson, Peter J.G. & Arapostathis, Stathis & Carlsson-Hyslop, Anna & Thornton, Judith, 2013. "Branching points for transition pathways: assessing responses of actors to challenges on pathways to a low carbon future," Energy Policy, Elsevier, vol. 52(C), pages 146-158.
    15. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    16. Gretchen C. Daily & Brian H. Walker, 2000. "Seeking the great transition," Nature, Nature, vol. 403(6767), pages 243-245, January.
    17. Hall, Stephen & Foxon, Timothy J., 2014. "Values in the Smart Grid: The co-evolving political economy of smart distribution," Energy Policy, Elsevier, vol. 74(C), pages 600-609.
    18. Diaz-Rainey, Ivan & Tzavara, Dionisia, 2012. "Financing the decarbonized energy system through green electricity tariffs: A diffusion model of an induced consumer environmental market," Technological Forecasting and Social Change, Elsevier, vol. 79(9), pages 1693-1704.
    19. Pfenninger, Stefan & Keirstead, James, 2015. "Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security," Applied Energy, Elsevier, vol. 152(C), pages 83-93.
    20. Späth, Philipp & Rohracher, Harald, 2010. "'Energy regions': The transformative power of regional discourses on socio-technical futures," Research Policy, Elsevier, vol. 39(4), pages 449-458, May.
    21. Geels, Frank W., 2012. "A socio-technical analysis of low-carbon transitions: introducing the multi-level perspective into transport studies," Journal of Transport Geography, Elsevier, vol. 24(C), pages 471-482.
    22. Dale W. Jorgenson, 1986. "The Great Transition: Energy and Economic Change," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-13.
    23. Geels, Frank W. & Kemp, René, 2007. "Dynamics in socio-technical systems: Typology of change processes and contrasting case studies," Technology in Society, Elsevier, vol. 29(4), pages 441-455.
    24. Gambhir, Ajay & Schulz, Niels & Napp, Tamaryn & Tong, Danlu & Munuera, Luis & Faist, Mark & Riahi, Keywan, 2013. "A hybrid modelling approach to develop scenarios for China's carbon dioxide emissions to 2050," Energy Policy, Elsevier, vol. 59(C), pages 614-632.
    25. Rutter, Paul & Keirstead, James, 2012. "A brief history and the possible future of urban energy systems," Energy Policy, Elsevier, vol. 50(C), pages 72-80.
    26. Pregger, Thomas & Nitsch, Joachim & Naegler, Tobias, 2013. "Long-term scenarios and strategies for the deployment of renewable energies in Germany," Energy Policy, Elsevier, vol. 59(C), pages 350-360.
    27. Eyre, Nick & Baruah, Pranab, 2015. "Uncertainties in future energy demand in UK residential heating," Energy Policy, Elsevier, vol. 87(C), pages 641-653.
    28. Rob Roggema & Tim Vermeend & Andy Van den Dobbelsteen, 2012. "Incremental Change, Transition or Transformation? Optimising Change Pathways for Climate Adaptation in Spatial Planning," Sustainability, MDPI, vol. 4(10), pages 1-25, October.
    29. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    30. Chappin, Emile J.L. & Ligtvoet, Andreas, 2014. "Transition and transformation: A bibliometric analysis of two scientific networks researching socio-technical change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 715-723.
    31. Muench, Stefan & Thuss, Sebastian & Guenther, Edeltraud, 2014. "What hampers energy system transformations? The case of smart grids," Energy Policy, Elsevier, vol. 73(C), pages 80-92.
    32. Marcucci, Adriana & Fragkos, Panagiotis, 2015. "Drivers of regional decarbonization through 2100: A multi-model decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 111-124.
    33. Bertram, Christoph & Johnson, Nils & Luderer, Gunnar & Riahi, Keywan & Isaac, Morna & Eom, Jiyong, 2015. "Carbon lock-in through capital stock inertia associated with weak near-term climate policies," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 62-72.
    34. Sano, Fuminori & Wada, Kenichi & Akimoto, Keigo & Oda, Junichiro, 2015. "Assessments of GHG emission reduction scenarios of different levels and different short-term pledges through macro- and sectoral decomposition analyses," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 153-165.
    35. Hong, Lixuan & Lund, Henrik & Mathiesen, Brian Vad & Möller, Bernd, 2013. "2050 pathway to an active renewable energy scenario for Jiangsu province," Energy Policy, Elsevier, vol. 53(C), pages 267-278.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alfredo Agustoni, 2017. "Commenti," PRISMA Economia - Societ? - Lavoro, FrancoAngeli Editore, vol. 2017(1-2), pages 76-81.
    2. Marco Casazza & Francesco Gonella & Gengyuan Liu & Antonio Proto & Renato Passaro, 2021. "Physical Constraints on Global Social-Ecological Energy System," Energies, MDPI, vol. 14(23), pages 1-25, December.
    3. Brauers, Hanna & Oei, Pao-Yu, 2020. "The political economy of coal in Poland: Drivers and barriers for a shift away from fossil fuels," Energy Policy, Elsevier, vol. 144(C).
    4. Aghahosseini, Arman & Solomon, A.A. & Breyer, Christian & Pregger, Thomas & Simon, Sonja & Strachan, Peter & Jäger-Waldau, Arnulf, 2023. "Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness," Applied Energy, Elsevier, vol. 331(C).
    5. N. P. Hariram & K. B. Mekha & Vipinraj Suganthan & K. Sudhakar, 2023. "Sustainalism: An Integrated Socio-Economic-Environmental Model to Address Sustainable Development and Sustainability," Sustainability, MDPI, vol. 15(13), pages 1-37, July.
    6. Teresa Pakulska, 2021. "Green Energy in Central and Eastern European (CEE) Countries: New Challenges on the Path to Sustainable Development," Energies, MDPI, vol. 14(4), pages 1-19, February.
    7. Brauers, Hanna & Oei, Pao-Yu, 2020. "The political economy of coal in Poland: Drivers and barriers for a shift away from fossil fuels," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 144.
    8. Misconel, Steffi & Zöphel, Christoph & Möst, Dominik, 2021. "Assessing the value of demand response in a decarbonized energy system – A large-scale model application," Applied Energy, Elsevier, vol. 299(C).
    9. Tang, Ou & Rehme, Jakob & Cerin, Pontus & Huisingh, Donald, 2021. "Hydrogen production in the Swedish power sector: Considering operational volatilities and long-term uncertainties," Energy Policy, Elsevier, vol. 148(PB).
    10. Haichao Wang & Giulia Di Pietro & Xiaozhou Wu & Risto Lahdelma & Vittorio Verda & Ilkka Haavisto, 2018. "Renewable and Sustainable Energy Transitions for Countries with Different Climates and Renewable Energy Sources Potentials," Energies, MDPI, vol. 11(12), pages 1-32, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mattes, Jannika & Huber, Andreas & Koehrsen, Jens, 2015. "Energy transitions in small-scale regions – What we can learn from a regional innovation systems perspective," Energy Policy, Elsevier, vol. 78(C), pages 255-264.
    2. Zhao, Zhen-Yu & Chang, Rui-Dong & Chen, Yu-Long, 2016. "What hinder the further development of wind power in China?—A socio-technical barrier study," Energy Policy, Elsevier, vol. 88(C), pages 465-476.
    3. Canitez, Fatih, 2019. "Pathways to sustainable urban mobility in developing megacities: A socio-technical transition perspective," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 319-329.
    4. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    5. Moradi, Afsaneh & Vagnoni, Emidia, 2018. "A multi-level perspective analysis of urban mobility system dynamics: What are the future transition pathways?," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 231-243.
    6. Roesler, Tim & Hassler, Markus, 2019. "Creating niches – The role of policy for the implementation of bioenergy village cooperatives in Germany," Energy Policy, Elsevier, vol. 124(C), pages 95-101.
    7. Nesari, Mohammad & Naghizadeh, Mohammad & Ghazinoori, Soroush & Manteghi, Manoochehr, 2022. "The evolution of socio-technical transition studies: A scientometric analysis," Technology in Society, Elsevier, vol. 68(C).
    8. Edmondson, Duncan L. & Kern, Florian & Rogge, Karoline S., 2019. "The co-evolution of policy mixes and socio-technical systems: Towards a conceptual framework of policy mix feedback in sustainability transitions," Research Policy, Elsevier, vol. 48(10).
    9. Aurelie Tricoire, 2015. "Uncertainty, vision, and the vitality of the emerging smart grid," Post-Print hal-02351994, HAL.
    10. Isoaho, Karoliina & Karhunmaa, Kamilla, 2019. "A critical review of discursive approaches in energy transitions," Energy Policy, Elsevier, vol. 128(C), pages 930-942.
    11. Nilsson, Måns & Nykvist, Björn, 2016. "Governing the electric vehicle transition – Near term interventions to support a green energy economy," Applied Energy, Elsevier, vol. 179(C), pages 1360-1371.
    12. Yuan, Jiahai & Xu, Yan & Hu, Zhaoguang, 2012. "Delivering power system transition in China," Energy Policy, Elsevier, vol. 50(C), pages 751-772.
    13. Yuan, Jiahai & Xu, Yan & Hu, Zhen & Yu, Zhongfu & Liu, Jiangyan & Hu, Zhaoguang & Xu, Ming, 2012. "Managing electric power system transition in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5660-5677.
    14. Edsand, Hans, 2016. "Technological Innovation Systems and the wider context: A framework for developing countries," MERIT Working Papers 2016-017, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    15. Pekkarinen, Satu & Melkas, Helinä, 2019. "Welfare state transition in the making: Focus on the niche-regime interaction in Finnish elderly care services," Technological Forecasting and Social Change, Elsevier, vol. 145(C), pages 240-253.
    16. Vandeventer, James Scott & Cattaneo, Claudio & Zografos, Christos, 2019. "A Degrowth Transition: Pathways for the Degrowth Niche to Replace the Capitalist-Growth Regime," Ecological Economics, Elsevier, vol. 156(C), pages 272-286.
    17. Xu, Shengqing, 2021. "The paradox of the energy revolution in China: A socio-technical transition perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Ronan Bolton & Timothy J Foxon, 2013. "Urban Infrastructure Dynamics: Market Regulation and the Shaping of District Energy in UK Cities," Environment and Planning A, , vol. 45(9), pages 2194-2211, September.
    19. Edsand, Hans-Erik, 2019. "Technological innovation system and the wider context: A framework for developing countries," Technology in Society, Elsevier, vol. 58(C).
    20. Matthew Lockwood & Caroline Kuzemko & Catherine Mitchell & Richard Hoggett, 2017. "Historical institutionalism and the politics of sustainable energy transitions: A research agenda," Environment and Planning C, , vol. 35(2), pages 312-333, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:107:y:2017:i:c:p:11-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.