IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v111y2016icp275-284.html
   My bibliography  Save this article

Innovation performance and influencing factors of low-carbon technological innovation under the global value chain: A case of Chinese manufacturing industry

Author

Listed:
  • Bi, Kexin
  • Huang, Ping
  • Wang, Xiangxiang

Abstract

Combing the global value chain framework and linear innovation process model, this paper analyzes the innovation performance of low-carbon technological innovation activities under the global value chain and the influencing factors. Other than previous research on sustainable technological innovation with major focus on radical innovation and socio-technical system transitions activities, this paper places focus on the general innovation characteristics of low-carbon technologies through an integrating view of global value chain and linear innovation process. This paper proposes an analytical framework of the linear innovation process under the global value chain, and uses factor analysis and a DEA-Tobit two-stage method to analyze the low-carbon technological innovation performance and its influencing factors of China's manufacturing industry under global value chain. The results show that the low-carbon technological innovation performance is diverse across different manufacturing industries in China. Moreover, among the three major influencing factors, government regulation is the only factor that shows a positive influence on low-carbon technological innovation performance, yet the effect is quite weak. Technology push displays a negative effect, and the impact of market pull on low-carbon technological innovation performance is not significant.

Suggested Citation

  • Bi, Kexin & Huang, Ping & Wang, Xiangxiang, 2016. "Innovation performance and influencing factors of low-carbon technological innovation under the global value chain: A case of Chinese manufacturing industry," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 275-284.
  • Handle: RePEc:eee:tefoso:v:111:y:2016:i:c:p:275-284
    DOI: 10.1016/j.techfore.2016.07.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162516301810
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Ping & Negro, Simona O. & Hekkert, Marko P. & Bi, Kexin, 2016. "How China became a leader in solar PV: An innovation system analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 777-789.
    2. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    3. Yang, Fuxia & Yang, Mian, 2015. "Analysis on China's eco-innovations: Regulation context, intertemporal change and regional differences," European Journal of Operational Research, Elsevier, vol. 247(3), pages 1003-1012.
    4. Raymond, Wladimir & Mohnen, Pierre & Palm, Franz & Schneider, Berit, 2004. "An Empirically-Based Taxonomy of Dutch Manufacturing: Innovation Policy Implications," Research Memorandum 011, Maastricht University, Maastricht Economic Research Institute on Innovation and Technology (MERIT).
    5. Horbach, Jens & Rammer, Christian & Rennings, Klaus, 2012. "Determinants of eco-innovations by type of environmental impact — The role of regulatory push/pull, technology push and market pull," Ecological Economics, Elsevier, vol. 78(C), pages 112-122.
    6. Andrea Morrison & Carlo Pietrobelli & Roberta Rabellotti, 2008. "Global Value Chains and Technological Capabilities: A Framework to Study Learning and Innovation in Developing Countries," Oxford Development Studies, Taylor & Francis Journals, vol. 36(1), pages 39-58.
    7. van Alphen, Klaas & Noothout, Paul M. & Hekkert, Marko P. & Turkenburg, Wim C., 2010. "Evaluating the development of carbon capture and storage technologies in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 971-986, April.
    8. Chen Kaihua & Kou Mingting, 2014. "Staged efficiency and its determinants of regional innovation systems: a two-step analytical procedure," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(2), pages 627-657, March.
    9. Gosens, Jorrit & Lu, Yonglong, 2013. "From lagging to leading? Technological innovation systems in emerging economies and the case of Chinese wind power," Energy Policy, Elsevier, vol. 60(C), pages 234-250.
    10. Breukers, Sylvia & Hisschemöller, Matthijs & Cuppen, Eefje & Suurs, Roald, 2014. "Analysing the past and exploring the future of sustainable biomass. Participatory stakeholder dialogue and technological innovation systems research," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 227-235.
    11. Cole, Matthew A. & Elliott, Robert J.R. & Shimamoto, Kenichi, 2005. "Industrial characteristics, environmental regulations and air pollution: an analysis of the UK manufacturing sector," Journal of Environmental Economics and Management, Elsevier, vol. 50(1), pages 121-143, July.
    12. Rennings, Klaus, 2000. "Redefining innovation -- eco-innovation research and the contribution from ecological economics," Ecological Economics, Elsevier, vol. 32(2), pages 319-332, February.
    13. Humphrey, John. & Chen, Martha., 2004. "Upgrading in global value chains," ILO Working Papers 993698523402676, International Labour Organization.
    14. Pietrobelli, Carlo & Rabellotti, Roberta, 2011. "Global Value Chains Meet Innovation Systems: Are There Learning Opportunities for Developing Countries?," World Development, Elsevier, vol. 39(7), pages 1261-1269, July.
    15. Massimo Tavoni & Enrica Cian & Gunnar Luderer & Jan Steckel & Henri Waisman, 2012. "The value of technology and of its evolution towards a low carbon economy," Climatic Change, Springer, vol. 114(1), pages 39-57, September.
    16. Martin Woerter, 2009. "Industry diversity and its impact on the innovation performance of firms," Journal of Evolutionary Economics, Springer, vol. 19(5), pages 675-700, October.
    17. repec:ilo:ilowps:369852 is not listed on IDEAS
    18. Henriques Jr., Mauricio F. & Dantas, Fabrício & Schaeffer, Roberto, 2010. "Potential for reduction of CO2 emissions and a low-carbon scenario for the Brazilian industrial sector," Energy Policy, Elsevier, vol. 38(4), pages 1946-1961, April.
    19. John Humphrey & Hubert Schmitz, 2002. "How does insertion in global value chains affect upgrading in industrial clusters?," Regional Studies, Taylor & Francis Journals, vol. 36(9), pages 1017-1027.
    20. Bergek, Anna & Jacobsson, Staffan & Carlsson, Bo & Lindmark, Sven & Rickne, Annika, 2008. "Analyzing the functional dynamics of technological innovation systems: A scheme of analysis," Research Policy, Elsevier, vol. 37(3), pages 407-429, April.
    21. Kaihua Chen & Jiancheng Guan, 2012. "Measuring the Efficiency of China's Regional Innovation Systems: Application of Network Data Envelopment Analysis (DEA)," Regional Studies, Taylor & Francis Journals, vol. 46(3), pages 355-377, April.
    22. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    23. MacGillivray, Andrew & Jeffrey, Henry & Winskel, Mark & Bryden, Ian, 2014. "Innovation and cost reduction for marine renewable energy: A learning investment sensitivity analysis," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 108-124.
    24. Valadkhani, Abbas & Roshdi, Israfil & Smyth, Russell, 2016. "A multiplicative environmental DEA approach to measure efficiency changes in the world's major polluters," Energy Economics, Elsevier, vol. 54(C), pages 363-375.
    25. Uyarra, Elvira & Shapira, Philip & Harding, Alan, 2016. "Low carbon innovation and enterprise growth in the UK: Challenges of a place-blind policy mix," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 264-272.
    26. Antje Klitkou & Lars Coenen, 2013. "The Emergence of the Norwegian Solar Photovoltaic Industry in a Regional Perspective," European Planning Studies, Taylor & Francis Journals, vol. 21(11), pages 1796-1819, November.
    27. Hung, Shiu-Wan & Wang, An-Pang, 2012. "Entrepreneurs with glamour? DEA performance characterization of high-tech and older-established industries," Economic Modelling, Elsevier, vol. 29(4), pages 1146-1153.
    28. Klaus Rennings & Christian Rammer, 2011. "The Impact of Regulation-Driven Environmental Innovation on Innovation Success and Firm Performance," Industry and Innovation, Taylor & Francis Journals, vol. 18(3), pages 255-283.
    29. Greene, William H, 1981. "On the Asymptotic Bias of the Ordinary Least Squares Estimator of the Tobit Model," Econometrica, Econometric Society, vol. 49(2), pages 505-513, March.
    30. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    31. Staffan Jacobsson & Anna Bergek, 2004. "Transforming the energy sector: the evolution of technological systems in renewable energy technology," Industrial and Corporate Change, Oxford University Press, vol. 13(5), pages 815-849, October.
    32. Smith, Adrian & Voß, Jan-Peter & Grin, John, 2010. "Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges," Research Policy, Elsevier, vol. 39(4), pages 435-448, May.
    33. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    34. Pietrobelli, Carlo & Puppato, Fernanda, 2016. "Technology foresight and industrial strategy," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 117-125.
    35. Bi, Kexin & Huang, Ping & Ye, Hui, 2015. "Risk identification, evaluation and response of low-carbon technological innovation under the global value chain: A case of the Chinese manufacturing industry," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 238-248.
    36. Horbach, Jens, 2008. "Determinants of environmental innovation--New evidence from German panel data sources," Research Policy, Elsevier, vol. 37(1), pages 163-173, February.
    37. Zhang, Fang & Gallagher, Kelly Sims, 2016. "Innovation and technology transfer through global value chains: Evidence from China's PV industry," Energy Policy, Elsevier, vol. 94(C), pages 191-203.
    38. Lööf, Hans & Heshmati, Almas & Asplund, Rita & Nåås, Svein-Olav, 2001. "Innovation and Performance in Manufacturing Industries: A Comparison of the Nordic Countries," SSE/EFI Working Paper Series in Economics and Finance 0457, Stockholm School of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Costantini, Valeria & Crespi, Francesco & Paglialunga, Elena & Sforna, Giorgia, 2020. "System transition and structural change processes in the energy efficiency of residential sector: Evidence from EU countries," Structural Change and Economic Dynamics, Elsevier, vol. 53(C), pages 309-329.
    2. Wang, Ya & Pan, Jiao-feng & Pei, Rui-min & Yi, Bo-Wen & Yang, Guo-liang, 2020. "Assessing the technological innovation efficiency of China's high-tech industries with a two-stage network DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    3. Wang, Keying & Wu, Meng & Sun, Yongping & Shi, Xunpeng & Sun, Ao & Zhang, Ping, 2019. "Resource abundance, industrial structure, and regional carbon emissions efficiency in China," Resources Policy, Elsevier, vol. 60(C), pages 203-214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:111:y:2016:i:c:p:275-284. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.