IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v94y2016icp191-203.html
   My bibliography  Save this article

Innovation and technology transfer through global value chains: Evidence from China's PV industry

Author

Listed:
  • Zhang, Fang
  • Gallagher, Kelly Sims

Abstract

China's success as a rapid innovation follower in the infant Photovoltaic (PV) industry surprised many observers. This paper explores how China inserted itself into global clean energy innovation systems by examining the case of the solar PV industry. The paper decomposes the global PV industrial value chain, and determines the main factors shaping PV technology transfer and diffusion. Chinese firms first entered PV module manufacturing through technology acquisition, and then gradually built their global competitiveness by utilizing a vertical integration strategy within segments of the industry as well as the broader PV value chain. The main drivers for PV technology transfer from the global innovation system to China are global market formation policy, international mobilization of talent, the flexibility of manufacturing in China, and belated policy incentives from China's government. The development trajectory of the PV industry in China indicates that innovation in cleaner energy technologies can occur through both global and national innovation processes, and knowledge exchange along the global PV value chain.

Suggested Citation

  • Zhang, Fang & Gallagher, Kelly Sims, 2016. "Innovation and technology transfer through global value chains: Evidence from China's PV industry," Energy Policy, Elsevier, vol. 94(C), pages 191-203.
  • Handle: RePEc:eee:enepol:v:94:y:2016:i:c:p:191-203
    DOI: 10.1016/j.enpol.2016.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421516301835
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2016.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    2. Ockwell, David G. & Watson, Jim & MacKerron, Gordon & Pal, Prosanto & Yamin, Farhana, 2008. "Key policy considerations for facilitating low carbon technology transfer to developing countries," Energy Policy, Elsevier, vol. 36(11), pages 4104-4115, November.
    3. Lall, Sanjaya & Teubal, Morris, 1998. ""Market-stimulating" technology policies in developing countries: A framework with examples from East Asia," World Development, Elsevier, vol. 26(8), pages 1369-1385, August.
    4. Carlsson, B & Stankiewicz, R, 1991. "On the Nature, Function and Composition of Technological Systems," Journal of Evolutionary Economics, Springer, vol. 1(2), pages 93-118, April.
    5. Ru, Peng & Zhi, Qiang & Zhang, Fang & Zhong, Xiaotian & Li, Jianqiang & Su, Jun, 2012. "Behind the development of technology: The transition of innovation modes in China’s wind turbine manufacturing industry," Energy Policy, Elsevier, vol. 43(C), pages 58-69.
    6. Andrea Morrison & Carlo Pietrobelli & Roberta Rabellotti, 2008. "Global Value Chains and Technological Capabilities: A Framework to Study Learning and Innovation in Developing Countries," Oxford Development Studies, Taylor & Francis Journals, vol. 36(1), pages 39-58.
    7. Namchul Shin & Kenneth L. Kraemer & Jason Dedrick, 2012. "Value Capture in the Global Electronics Industry: Empirical Evidence for the “Smiling Curve” Concept," Industry and Innovation, Taylor & Francis Journals, vol. 19(2), pages 89-107, February.
    8. Rennings, Klaus, 2000. "Redefining innovation -- eco-innovation research and the contribution from ecological economics," Ecological Economics, Elsevier, vol. 32(2), pages 319-332, February.
    9. Pietrobelli, Carlo & Rabellotti, Roberta, 2011. "Global Value Chains Meet Innovation Systems: Are There Learning Opportunities for Developing Countries?," World Development, Elsevier, vol. 39(7), pages 1261-1269, July.
    10. Nahm, Jonas & Steinfeld, Edward S., 2014. "Scale-up Nation: China’s Specialization in Innovative Manufacturing," World Development, Elsevier, vol. 54(C), pages 288-300.
    11. Zhang, Fang & Deng, Hao & Margolis, Robert & Su, Jun, 2015. "Analysis of distributed-generation photovoltaic deployment, installation time and cost, market barriers, and policies in China," Energy Policy, Elsevier, vol. 81(C), pages 43-55.
    12. Jason Dedrick & Kenneth L. Kraemer & Greg Linden, 2010. "Who profits from innovation in global value chains? A study of the iPod and notebook PCs," Industrial and Corporate Change, Oxford University Press, vol. 19(1), pages 81-116, February.
    13. Markard, Jochen & Truffer, Bernhard, 2008. "Technological innovation systems and the multi-level perspective: Towards an integrated framework," Research Policy, Elsevier, vol. 37(4), pages 596-615, May.
    14. de la Tour, Arnaud & Glachant, Matthieu & Ménière, Yann, 2011. "Innovation and international technology transfer: The case of the Chinese photovoltaic industry," Energy Policy, Elsevier, vol. 39(2), pages 761-770, February.
    15. Lewis, Joanna I. & Wiser, Ryan H., 2007. "Fostering a renewable energy technology industry: An international comparison of wind industry policy support mechanisms," Energy Policy, Elsevier, vol. 35(3), pages 1844-1857, March.
    16. John Humphrey & Hubert Schmitz, 2002. "How does insertion in global value chains affect upgrading in industrial clusters?," Regional Studies, Taylor & Francis Journals, vol. 36(9), pages 1017-1027.
    17. Bergek, Anna & Jacobsson, Staffan & Carlsson, Bo & Lindmark, Sven & Rickne, Annika, 2008. "Analyzing the functional dynamics of technological innovation systems: A scheme of analysis," Research Policy, Elsevier, vol. 37(3), pages 407-429, April.
    18. Zhao, Zhen-yu & Zhang, Shuang-ying & Zuo, Jian, 2011. "A critical analysis of the photovoltaic power industry in China – From diamond model to gear model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4963-4971.
    19. Päivi Oinas & Edward J. Malecki, 2002. "The Evolution of Technologies in Time and Space: From National and Regional to Spatial Innovation Systems," International Regional Science Review, , vol. 25(1), pages 102-131, January.
    20. Pueyo, Ana & García, Rodrigo & Mendiluce, María & Morales, Darío, 2011. "The role of technology transfer for the development of a local wind component industry in Chile," Energy Policy, Elsevier, vol. 39(7), pages 4274-4283, July.
    21. Zheng, Cheng & Kammen, Daniel M., 2014. "An innovation-focused roadmap for a sustainable global photovoltaic industry," Energy Policy, Elsevier, vol. 67(C), pages 159-169.
    22. Zhang, Wei & White, Steven, 2016. "Overcoming the liability of newness: Entrepreneurial action and the emergence of China's private solar photovoltaic firms," Research Policy, Elsevier, vol. 45(3), pages 604-617.
    23. Grau, Thilo & Huo, Molin & Neuhoff, Karsten, 2012. "Survey of photovoltaic industry and policy in Germany and China," Energy Policy, Elsevier, vol. 51(C), pages 20-37.
    24. Zhi, Qiang & Su, Jun & Ru, Peng & Anadon, Laura Diaz, 2013. "The evolution of China's National Energy RD&D Programs: The role of scientists in science and technology decision making," Energy Policy, Elsevier, vol. 61(C), pages 1568-1585.
    25. Xiliang Zhang & Shiyan Chang & Molin Huo & Ruoshui Wang, 2009. "China's wind industry: policy lessons for domestic government interventions and international support," Climate Policy, Taylor & Francis Journals, vol. 9(5), pages 553-564, September.
    26. Mu, Qing & Lee, Keun, 2005. "Knowledge diffusion, market segmentation and technological catch-up: The case of the telecommunication industry in China," Research Policy, Elsevier, vol. 34(6), pages 759-783, August.
    27. Peters, Michael & Schneider, Malte & Griesshaber, Tobias & Hoffmann, Volker H., 2012. "The impact of technology-push and demand-pull policies on technical change – Does the locus of policies matter?," Research Policy, Elsevier, vol. 41(8), pages 1296-1308.
    28. Carlsson, Bo, 2006. "Internationalization of innovation systems: A survey of the literature," Research Policy, Elsevier, vol. 35(1), pages 56-67, February.
    29. Reddy, N. Mohan & Zhao, Liming, 1990. "International technology transfer: A review," Research Policy, Elsevier, vol. 19(4), pages 285-307, August.
    30. Xiaolan Fu & Jing Zhang, 2011. "Technology transfer, indigenous innovation and leapfrogging in green technology: the solar-PV industry in China and India," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 9(4), pages 329-347, August.
    31. Able-Thomas, U., 1996. "Models of renewable energy technology transfer to developing countries," Renewable Energy, Elsevier, vol. 9(1), pages 1104-1107.
    32. Michiko Iizuka, 2015. "Diverse and uneven pathways towards transition to low carbon development: the case of solar PV technology in China," Innovation and Development, Taylor & Francis Journals, vol. 5(2), pages 241-261, October.
    33. Gereffi, Gary, 1999. "International trade and industrial upgrading in the apparel commodity chain," Journal of International Economics, Elsevier, vol. 48(1), pages 37-70, June.
    34. Zhi, Qiang & Sun, Honghang & Li, Yanxi & Xu, Yurui & Su, Jun, 2014. "China’s solar photovoltaic policy: An analysis based on policy instruments," Applied Energy, Elsevier, vol. 129(C), pages 308-319.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Binz, Christian & Gosens, Jorrit & Hansen, Teis & Hansen, Ulrich Elmer, 2017. "Toward Technology-Sensitive Catching-Up Policies: Insights from Renewable Energy in China," World Development, Elsevier, vol. 96(C), pages 418-437.
    2. Binz, Christian & Truffer, Bernhard, 2017. "Global Innovation Systems—A conceptual framework for innovation dynamics in transnational contexts," Research Policy, Elsevier, vol. 46(7), pages 1284-1298.
    3. Binz, Christian & Diaz Anadon, Laura, 2016. "Transplanting clean-tech paths from elsewhere: The emergence of the Chinese solar PV industry," Papers in Innovation Studies 2016/29, Lund University, CIRCLE - Centre for Innovation Research.
    4. Pueyo, Ana, 2013. "Enabling frameworks for low-carbon technology transfer to small emerging economies: Analysis of ten case studies in Chile," Energy Policy, Elsevier, vol. 53(C), pages 370-380.
    5. Watkins, Andrew & Papaioannou, Theo & Mugwagwa, Julius & Kale, Dinar, 2015. "National innovation systems and the intermediary role of industry associations in building institutional capacities for innovation in developing countries: A critical review of the literature," Research Policy, Elsevier, vol. 44(8), pages 1407-1418.
    6. Huang, Ping & Negro, Simona O. & Hekkert, Marko P. & Bi, Kexin, 2016. "How China became a leader in solar PV: An innovation system analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 777-789.
    7. Gosens, Jorrit & Lu, Yonglong & Coenen , Lars, 2013. "Clean-tech Innovation in Emerging Economies: Transnational Dimensions in Technological Innovation System Formation," Papers in Innovation Studies 2013/10, Lund University, CIRCLE - Centre for Innovation Research.
    8. Bi, Kexin & Huang, Ping & Wang, Xiangxiang, 2016. "Innovation performance and influencing factors of low-carbon technological innovation under the global value chain: A case of Chinese manufacturing industry," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 275-284.
    9. Shubbak, Mahmood H., 2019. "The technological system of production and innovation: The case of photovoltaic technology in China," Research Policy, Elsevier, vol. 48(4), pages 993-1015.
    10. Gosens, Jorrit & Lu, Yonglong, 2013. "From lagging to leading? Technological innovation systems in emerging economies and the case of Chinese wind power," Energy Policy, Elsevier, vol. 60(C), pages 234-250.
    11. Malhotra, Abhishek & Schmidt, Tobias S. & Huenteler, Joern, 2019. "The role of inter-sectoral learning in knowledge development and diffusion: Case studies on three clean energy technologies," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 464-487.
    12. Jun Jin & Zhengyi Zhang & Liying Wang, 2019. "From the Host to the Home Country, the International Upgradation of EMNEs in Sustainability Industries—The Case of a Chinese PV Company," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    13. Zhigao Liu & Yimei Yin & Weidong Liu & Michael Dunford, 2015. "Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 135-158, April.
    14. Lema, Adrian & Lema, Rasmus, 2016. "Low-carbon innovation and technology transfer in latecomer countries: Insights from solar PV in the clean development mechanism," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 223-236.
    15. Graf, Holger & Kalthaus, Martin, 2018. "International research networks: Determinants of country embeddedness," Research Policy, Elsevier, vol. 47(7), pages 1198-1214.
    16. Curran, Louise & Lv, Ping & Spigarelli, Francesca, 2017. "Chinese investment in the EU renewable energy sector: Motives, synergies and policy implications," Energy Policy, Elsevier, vol. 101(C), pages 670-682.
    17. Emanuele Brancati & Raffaele Brancati & Andrea Maresca, 2017. "Global value chains, innovation and performance: firm-level evidence from the Great Recession," Journal of Economic Geography, Oxford University Press, vol. 17(5), pages 1039-1073.
    18. Hu, Rui & Skea, Jim & Hannon, Matthew J., 2018. "Measuring the energy innovation process: An indicator framework and a case study of wind energy in China," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 227-244.
    19. Rogge, Karoline S. & Hoffmann, Volker H., 2010. "The impact of the EU ETS on the sectoral innovation system for power generation technologies - Findings for Germany," Energy Policy, Elsevier, vol. 38(12), pages 7639-7652, December.
    20. Mohammad Esmailzadeh & Siamak Noori & Alireza Aliahmadi & Hamidreza Nouralizadeh & Marcel Bogers, 2020. "A Functional Analysis of Technological Innovation Systems in Developing Countries: An Evaluation of Iran’s Photovoltaic Innovation System," Sustainability, MDPI, vol. 12(5), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:94:y:2016:i:c:p:191-203. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.