IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v144y2021ics136403212100318x.html
   My bibliography  Save this article

Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options

Author

Listed:
  • Yang, F.
  • Meerman, J.C.
  • Faaij, A.P.C.

Abstract

Meeting the Paris Agreement will most likely require the combination of CO2 capture and biomass in the industrial sector, resulting in net negative emissions. CO2 capture within the industry has been extensively investigated. However, biomass options have been poorly explored, with literature alluding to technical and economic barriers. In addition, a lack of consistency among studies makes comparing the performance of CO2 capture and/or biomass use between studies and sectors difficult. These inconsistencies include differences in methodology, system boundaries, level of integration, costs, greenhouse gas intensity of feedstock and energy carriers, and capital cost estimations. Therefore, an integrated evaluation of the techno-economic performance regarding CO2 capture and biomass use was performed for five energy-intensive industrial sub-sectors. Harmonization results indicate that CO2 mitigation potentials vary for each sub-sector, resulting in reductions of 1.4–2.7 t CO2/t steel (77%–149%), 0.7 t CO2/t cement (92%), 0.2 t CO2/t crude oil (68%), 1.9 t CO2/t pulp (1663%–2548%), and 34.9 t CO2/t H2 (313%). Negative emissions can be reached in the steel, paper and H2 sectors. Novel bio-based production routes might enable net negative emissions in the cement and (petro)chemical sectors as well. All the above-mentioned potentials can be reached for 100 €/t CO2 or less. Implementing mitigation options could reduce industrial CO2 emissions by 10 Gt CO2/y by 2050, easily meeting the targets of the 2 °C scenario by the International Energy Agency (1.8 Gt CO2/y reduction) for the industrial sector and even the Beyond 2 °C scenario (4.2 Gt CO2/y reduction).

Suggested Citation

  • Yang, F. & Meerman, J.C. & Faaij, A.P.C., 2021. "Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:rensus:v:144:y:2021:i:c:s136403212100318x
    DOI: 10.1016/j.rser.2021.111028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212100318X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:idb:brikps:81579 is not listed on IDEAS
    2. Meerman, J.C. & Ramírez, A. & Turkenburg, W.C. & Faaij, A.P.C., 2011. "Performance of simulated flexible integrated gasification polygeneration facilities. Part A: A technical-energetic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2563-2587, August.
    3. Andersson, E. & Harvey, S., 2006. "System analysis of hydrogen production from gasified black liquor," Energy, Elsevier, vol. 31(15), pages 3426-3434.
    4. Alexander Otto & Martin Robinius & Thomas Grube & Sebastian Schiebahn & Aaron Praktiknjo & Detlef Stolten, 2017. "Power-to-Steel: Reducing CO 2 through the Integration of Renewable Energy and Hydrogen into the German Steel Industry," Energies, MDPI, vol. 10(4), pages 1-21, April.
    5. Massimo Tavoni & Enrica Cian & Gunnar Luderer & Jan Steckel & Henri Waisman, 2012. "The value of technology and of its evolution towards a low carbon economy," Climatic Change, Springer, vol. 114(1), pages 39-57, September.
    6. Andersson, E. & Harvey, S., 2007. "Comparison of pulp-mill-integrated hydrogen production from gasified black liquor with stand-alone production from gasified biomass," Energy, Elsevier, vol. 32(4), pages 399-405.
    7. Johansson, Daniella & Rootzén, Johan & Berntsson, Thore & Johnsson, Filip, 2012. "Assessment of strategies for CO2 abatement in the European petroleum refining industry," Energy, Elsevier, vol. 42(1), pages 375-386.
    8. Mousa, Elsayed & Wang, Chuan & Riesbeck, Johan & Larsson, Mikael, 2016. "Biomass applications in iron and steel industry: An overview of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1247-1266.
    9. Möllersten, Kenneth & Gao, Lin & Yan, Jinyue & Obersteiner, Michael, 2004. "Efficient energy systems with CO2 capture and storage from renewable biomass in pulp and paper mills," Renewable Energy, Elsevier, vol. 29(9), pages 1583-1598.
    10. Pettersson, Karin & Harvey, Simon, 2012. "Comparison of black liquor gasification with other pulping biorefinery concepts – Systems analysis of economic performance and CO2 emissions," Energy, Elsevier, vol. 37(1), pages 136-153.
    11. T. Gasser & C. Guivarch & K. Tachiiri & C. D. Jones & P. Ciais, 2015. "Negative emissions physically needed to keep global warming below 2 °C," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    12. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    13. Mesfun, Sennai & Toffolo, Andrea, 2013. "Optimization of process integration in a Kraft pulp and paper mill – Evaporation train and CHP system," Applied Energy, Elsevier, vol. 107(C), pages 98-110.
    14. Abdul Quader, M. & Ahmed, Shamsuddin & Dawal, S.Z. & Nukman, Y., 2016. "Present needs, recent progress and future trends of energy-efficient Ultra-Low Carbon Dioxide (CO2) Steelmaking (ULCOS) program," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 537-549.
    15. Kenneth Möllersten & Lin Gao & Jinyue Yan, 2006. "CO 2 Capture in Pulp and Paper Mills: CO 2 Balances and Preliminary Cost Assessment," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 1129-1150, September.
    16. Johansson, Daniella & Franck, Per-Åke & Pettersson, Karin & Berntsson, Thore, 2013. "Comparative study of Fischer–Tropsch production and post-combustion CO2 capture at an oil refinery: Economic evaluation and GHG (greenhouse gas emissions) balances," Energy, Elsevier, vol. 59(C), pages 387-401.
    17. Li, Jia & Tharakan, Pradeep & Macdonald, Douglas & Liang, Xi, 2013. "Technological, economic and financial prospects of carbon dioxide capture in the cement industry," Energy Policy, Elsevier, vol. 61(C), pages 1377-1387.
    18. Nabgan, Walid & Tuan Abdullah, Tuan Amran & Mat, Ramli & Nabgan, Bahador & Gambo, Yahya & Ibrahim, Maryam & Ahmad, Arshad & Jalil, Aishah Abdul & Triwahyono, Sugeng & Saeh, Ibrahim, 2017. "Renewable hydrogen production from bio-oil derivative via catalytic steam reforming: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 347-357.
    19. Meerman, J.C. & Ramírez, A. & Turkenburg, W.C. & Faaij, A.P.C., 2012. "Performance of simulated flexible integrated gasification polygeneration facilities, Part B: Economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6083-6102.
    20. Möllersten, K. & Yan, J. & Westermark, M., 2003. "Potential and cost-effectiveness of CO2 reductions through energy measures in Swedish pulp and paper mills," Energy, Elsevier, vol. 28(7), pages 691-710.
    21. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    22. Berghout, Niels & Meerman, Hans & van den Broek, Machteld & Faaij, André, 2019. "Assessing deployment pathways for greenhouse gas emissions reductions in an industrial plant – A case study for a complex oil refinery," Applied Energy, Elsevier, vol. 236(C), pages 354-378.
    23. Jönsson, Johanna & Berntsson, Thore, 2012. "Analysing the potential for implementation of CCS within the European pulp and paper industry," Energy, Elsevier, vol. 44(1), pages 641-648.
    24. Christin Liptow & Anne‐Marie Tillman, 2012. "A Comparative Life Cycle Assessment Study of Polyethylene Based on Sugarcane and Crude Oil," Journal of Industrial Ecology, Yale University, vol. 16(3), pages 420-435, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerrit Ralf Surup & Hamideh Kaffash & Yan Ma & Anna Trubetskaya & Johan Berg Pettersen & Merete Tangstad, 2022. "Life Cycle Based Climate Emissions of Charcoal Conditioning Routes for the Use in the Ferro-Alloy Production," Energies, MDPI, vol. 15(11), pages 1-28, May.
    2. Kusuma, Ravi Teja & Hiremath, Rahul B. & Rajesh, Pachimatla & Kumar, Bimlesh & Renukappa, Suresh, 2022. "Sustainable transition towards biomass-based cement industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    3. Satu Lipiäinen & Eeva-Lotta Apajalahti & Esa Vakkilainen, 2023. "Decarbonization Prospects for the European Pulp and Paper Industry: Different Development Pathways and Needed Actions," Energies, MDPI, vol. 16(2), pages 1-18, January.
    4. Philipp Günther & Felix Ekardt, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," Land, MDPI, vol. 11(12), pages 1-29, November.
    5. Andrade, Carlos & Selosse, Sandrine & Maïzi, Nadia, 2022. "The role of power-to-gas in the integration of variable renewables," Applied Energy, Elsevier, vol. 313(C).
    6. Nhuchhen, Daya R. & Sit, Song P. & Layzell, David B., 2022. "Decarbonization of cement production in a hydrogen economy," Applied Energy, Elsevier, vol. 317(C).
    7. André P. C. Faaij, 2022. "Repairing What Policy Is Missing Out on: A Constructive View on Prospects and Preconditions for Sustainable Biobased Economy Options to Mitigate and Adapt to Climate Change," Energies, MDPI, vol. 15(16), pages 1-25, August.
    8. Olabi, A.G. & Obaideen, Khaled & Elsaid, Khaled & Wilberforce, Tabbi & Sayed, Enas Taha & Maghrabie, Hussein M. & Abdelkareem, Mohammad Ali, 2022. "Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    9. Nair, Purusothmn Nair S Bhasker & Tan, Raymond R. & Foo, Dominic C.Y., 2022. "Extended graphical approach for the implementation of energy-consuming negative emission technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Morenike Ajike Peters & Carine Tondo Alves & Jude Azubuike Onwudili, 2023. "A Review of Current and Emerging Production Technologies for Biomass-Derived Sustainable Aviation Fuels," Energies, MDPI, vol. 16(16), pages 1-40, August.
    11. Su, Guangcan & Zulkifli, Nurin Wahidah Mohd & Ong, Hwai Chyuan & Ibrahim, Shaliza & Cheah, Mei Yee & Zhu, Ruonan & Bu, Quan, 2023. "Co-pyrolysis of medical protective clothing and oil palm wastes for biofuel: Experimental, techno-economic, and environmental analyses," Energy, Elsevier, vol. 273(C).
    12. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Foley, Aoife M. & Rooney, David, 2022. "Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Guo, Jian & Zhong, Minghao & Chen, Shuran, 2022. "Analysis and simulation of BECCS vertical integration model in China based on evolutionary game and system dynamics," Energy, Elsevier, vol. 252(C).
    14. Jennifer Reeve & Oliver Grasham & Tariq Mahmud & Valerie Dupont, 2022. "Advanced Steam Reforming of Bio-Oil with Carbon Capture: A Techno-Economic and CO 2 Emissions Analysis," Clean Technol., MDPI, vol. 4(2), pages 1-20, April.
    15. Griffiths, Steve & Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D. & Foley, Aoife M. & Bazilian, Morgan D. & Kim, Jinsoo & Uratani, Joao M., 2023. "Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    16. Li, Zhuolun, 2023. "Do geopolitical risk, green finance, and the rule of law affect the sustainable environment in China? Findings from the BARDL approach," Resources Policy, Elsevier, vol. 81(C).
    17. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    18. Cary, Michael, 2023. "Climate policy boosts trade competitiveness: Evidence from timber trade networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    19. Günther, Philipp & Ekardt, Felix, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(12), pages 1-29.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    2. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg & Schmid, Erwin, 2010. "Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies," Applied Energy, Elsevier, vol. 87(7), pages 2128-2141, July.
    3. Pio, D.T. & Tarelho, L.A.C. & Pinto, P.C.R., 2020. "Gasification-based biorefinery integration in the pulp and paper industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Haro, Pedro & Aracil, Cristina & Vidal-Barrero, Fernando & Ollero, Pedro, 2015. "Rewarding of extra-avoided GHG emissions in thermochemical biorefineries incorporating Bio-CCS," Applied Energy, Elsevier, vol. 157(C), pages 255-266.
    5. Ida Karlsson & Johan Rootzén & Alla Toktarova & Mikael Odenberger & Filip Johnsson & Lisa Göransson, 2020. "Roadmap for Decarbonization of the Building and Construction Industry—A Supply Chain Analysis Including Primary Production of Steel and Cement," Energies, MDPI, vol. 13(16), pages 1-40, August.
    6. Naqvi, Muhammad & Yan, Jinyue & Dahlquist, Erik, 2012. "Bio-refinery system in a pulp mill for methanol production with comparison of pressurized black liquor gasification and dry gasification using direct causticization," Applied Energy, Elsevier, vol. 90(1), pages 24-31.
    7. Sandberg, Erik & Toffolo, Andrea & Krook-Riekkola, Anna, 2019. "A bottom-up study of biomass and electricity use in a fossil free Swedish industry," Energy, Elsevier, vol. 167(C), pages 1019-1030.
    8. Berghout, Niels & Meerman, Hans & van den Broek, Machteld & Faaij, André, 2019. "Assessing deployment pathways for greenhouse gas emissions reductions in an industrial plant – A case study for a complex oil refinery," Applied Energy, Elsevier, vol. 236(C), pages 354-378.
    9. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    10. Akbari, Maryam & Oyedun, Adetoyese Olajire & Kumar, Amit, 2018. "Ammonia production from black liquor gasification and co-gasification with pulp and waste sludges: A techno-economic assessment," Energy, Elsevier, vol. 151(C), pages 133-143.
    11. Wafiq, A. & Hanafy, M., 2015. "Feasibility assessment of diesel fuel production in Egypt using coal and biomass: Integrated novel methodology," Energy, Elsevier, vol. 85(C), pages 522-533.
    12. Nong, Guangzai & Huang, Lijie & Mo, Haitao & Wang, Shuangfei, 2013. "Investigate the variability of gas compositions and thermal efficiency of bagasse black liquor gasification," Energy, Elsevier, vol. 49(C), pages 178-181.
    13. Ron-Hendrik Hechelmann & Jan-Peter Seevers & Alexander Otte & Jan Sponer & Matthias Stark, 2020. "Renewable Energy Integration for Steam Supply of Industrial Processes—A Food Processing Case Study," Energies, MDPI, vol. 13(10), pages 1-20, May.
    14. Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wei, Wei & Sun, Yuhan, 2018. "Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China," Applied Energy, Elsevier, vol. 220(C), pages 192-207.
    15. Elsayed Mousa & Kurt Sjöblom, 2022. "Modeling and Optimization of Biochar Injection into Blast Furnace to Mitigate the Fossil CO 2 Emission," Sustainability, MDPI, vol. 14(4), pages 1-14, February.
    16. Haendel, Michael & Hirzel, Simon & Süß, Marlene, 2022. "Economic optima for buffers in direct reduction steelmaking under increasing shares of renewable hydrogen," Renewable Energy, Elsevier, vol. 190(C), pages 1100-1111.
    17. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    18. Uribe-Soto, Wilmar & Portha, Jean-François & Commenge, Jean-Marc & Falk, Laurent, 2017. "A review of thermochemical processes and technologies to use steelworks off-gases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 809-823.
    19. Wolfersdorf, Christian & Boblenz, Kristin & Pardemann, Robert & Meyer, Bernd, 2015. "Syngas-based annex concepts for chemical energy storage and improving flexibility of pulverized coal combustion power plants," Applied Energy, Elsevier, vol. 156(C), pages 618-627.
    20. Granacher, Julia & Nguyen, Tuong-Van & Castro-Amoedo, Rafael & Maréchal, François, 2022. "Overcoming decision paralysis—A digital twin for decision making in energy system design," Applied Energy, Elsevier, vol. 306(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:144:y:2021:i:c:s136403212100318x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.