IDEAS home Printed from
   My bibliography  Save this article

Performance of simulated flexible integrated gasification polygeneration facilities. Part A: A technical-energetic assessment


  • Meerman, J.C.
  • Ramírez, A.
  • Turkenburg, W.C.
  • Faaij, A.P.C.


This article investigates technical possibilities and performances of flexible integrated gasification polygeneration (IG-PG) facilities equipped with CO2 capture for the near future. These facilities can produce electricity during peak hours, while switching to the production of chemicals during off-peak hours. Several simulations were performed to investigate the influence of substituting feedstock and production on IG-PG facility output, load and efficiency. These simulations were done using a detailed AspenPlus simulation model of a Shell entrained flow gasifier combined with conversion facilities. In this model carbon-rich feedstocks (oil residues, coal and biomass) were converted to a variety of products (H2, electricity, FT-liquids, methanol and urea) using state-of-the-art technology. The size of the gasifier was limited to the equivalent of 2000Â MWth Il #6 coal input. Overall efficiency of the simulated non-flexible configurations to convert pure coal or pure wood pellets to electricity (40%HHV vs 38%HHV), FT-liquids (60%HHV vs 55%HHV), methanol (53%HHV vs 49%HHV) or urea (51%HHV vs 47%HHV) are in good agreement with the literature. Using torrefied wood pellets instead of pure wood pellets reduces the penalty drop in efficiency compared to coal. Moreover, torrefied wood pellets have superior energetic density, handling and feeding compared to wood pellets. In this analysis, the H2:CO ratio of the sweet syngas was fixed to match FT-liquids criterion. As a result, overall CO2 capture rates are low, around 56-65%, depending on the feedstock used. Still, especially with FT-liquids and methanol production, CO2 emissions at the facility are significantly reduced; less than 20% of the carbon feedstock entering the facility is emitted with the flue gas. Applying biomass and CO2 capture shows great opportunities to produce CO2-neutral electricity or chemicals. When the biomass fraction exceeds 40% on an energy basis, production is CO2-neutral, independent of what is produced. Biomass can be co-fed up till 50% on an energy basis. Higher fractions cause significant fouling on cooling equipment. A small part-load penalty is observed during the substitution of coal by biomass. When changing from pure coal to pure wood pellets, the power case suffers a 2.5% efficiency drop, while all three chemical cases have an efficiency drop of less than 1%. At the same time total output is reduced to 67-69%, mainly because of the lower energy density of biomass. By over-dimensioning the gasifier and gas cleanup and optimisation section this drop can be eliminated. The syngas can be tailored to the desired composition regardless of the used feedstock. Therefore, the chemical conversion sections only have to cope with a reduction in syngas flow and not with a change in syngas composition. Altering production between chemicals and electricity is possible, although the load of the conversion sections should remain between 40% and 100% to prevent operational problems. This gives a high degree of flexibility. Complete substitution between chemical and power production while using the same feedstock is possible for the methanol and urea cases. The FT-liquids case is restricted to 60-100% load of the chemical conversion section to prevent that the gas turbine load is reduced below 40%. The economic aspects of flexible IG-PG facilities are addressed in part B.

Suggested Citation

  • Meerman, J.C. & Ramírez, A. & Turkenburg, W.C. & Faaij, A.P.C., 2011. "Performance of simulated flexible integrated gasification polygeneration facilities. Part A: A technical-energetic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2563-2587, August.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:6:p:2563-2587

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Graham, John R. & Li, Si & Qiu, Jiaping, 2008. "Corporate misreporting and bank loan contracting," Journal of Financial Economics, Elsevier, vol. 89(1), pages 44-61, July.
    2. Ronald W. Breault, 2010. "Gasification Processes Old and New: A Basic Review of the Major Technologies," Energies, MDPI, vol. 3(2), pages 1-25, February.
    3. Neelis, Maarten & Patel, Martin & Blok, Kornelis & Haije, Wim & Bach, Pieter, 2007. "Approximation of theoretical energy-saving potentials for the petrochemical industry using energy balances for 68 key processes," Energy, Elsevier, vol. 32(7), pages 1104-1123.
    4. ,, 2007. "African Development Report 2007," OUP Catalogue, Oxford University Press, number 9780199238866, Decembrie.
    5. Hamelinck, Carlo N. & Faaij, André P.C. & den Uil, Herman & Boerrigter, Harold, 2004. "Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential," Energy, Elsevier, vol. 29(11), pages 1743-1771.
    6. Wipo, 2007. "WIPO PATENT REPORT, 2007 edition," WIPO Economics & Statistics Series, World Intellectual Property Organization - Economics and Statistics Division, number 2007:931, July.
    7. AfDB AfDB, . "African Development Report 2007," African Development Report, African Development Bank, number 24 edited by Adeleke Oluwole Salami.
    8. AfDB AfDB, . "AfDB Group Annual Report 2006," Annual Report, African Development Bank, number 62 edited by Koua Louis Kouakou.
    9. AfDB AfDB, . "African Development Report 2006," African Development Report, African Development Bank, number 23 edited by Adeleke Oluwole Salami.
    10. Wipo, 2007. "WIPO PATENT REPORT, 2008 edition," WIPO Economics & Statistics Series, World Intellectual Property Organization - Economics and Statistics Division, number 2008:931, July.
    11. Uslu, Ayla & Faaij, André P.C. & Bergman, P.C.A., 2008. "Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation," Energy, Elsevier, vol. 33(8), pages 1206-1223.
    12. -, 2007. "Caribbean development report Volume I," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38725, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Wolfersdorf, Christian & Boblenz, Kristin & Pardemann, Robert & Meyer, Bernd, 2015. "Syngas-based annex concepts for chemical energy storage and improving flexibility of pulverized coal combustion power plants," Applied Energy, Elsevier, vol. 156(C), pages 618-627.
    2. Segurado, R. & Pereira, S. & Correia, D. & Costa, M., 2019. "Techno-economic analysis of a trigeneration system based on biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 501-514.
    3. Buttler, Alexander & Kunze, Christian & Spliethoff, Hartmut, 2013. "IGCC–EPI: Decentralized concept of a highly load-flexible IGCC power plant for excess power integration," Applied Energy, Elsevier, vol. 104(C), pages 869-879.
    4. Berghout, Niels & Meerman, Hans & van den Broek, Machteld & Faaij, André, 2019. "Assessing deployment pathways for greenhouse gas emissions reductions in an industrial plant – A case study for a complex oil refinery," Applied Energy, Elsevier, vol. 236(C), pages 354-378.
    5. Jana, Kuntal & De, Sudipta, 2015. "Polygeneration using agricultural waste: Thermodynamic and economic feasibility study," Renewable Energy, Elsevier, vol. 74(C), pages 648-660.
    6. Singh, Surinder P. & Ohara, Brandon & Ku, Anthony Y., 2021. "Prospects for cost-competitive integrated gasification fuel cell systems," Applied Energy, Elsevier, vol. 290(C).
    7. Meerman, J.C. & Ramírez, A. & Turkenburg, W.C. & Faaij, A.P.C., 2012. "Performance of simulated flexible integrated gasification polygeneration facilities, Part B: Economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6083-6102.
    8. Subramanian, Avinash S.R. & Gundersen, Truls & Barton, Paul I. & Adams, Thomas A., 2022. "Global optimization of a hybrid waste tire and natural gas feedstock polygeneration system," Energy, Elsevier, vol. 250(C).
    9. Calise, Francesco & de Notaristefani di Vastogirardi, Giulio & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2018. "Simulation of polygeneration systems," Energy, Elsevier, vol. 163(C), pages 290-337.
    10. Chaudhary Awais Salman & Ch Bilal Omer, 2020. "Process Modelling and Simulation of Waste Gasification-Based Flexible Polygeneration Facilities for Power, Heat and Biofuels Production," Energies, MDPI, vol. 13(16), pages 1-22, August.
    11. Thallam Thattai, A. & Oldenbroek, V. & Schoenmakers, L. & Woudstra, T. & Aravind, P.V., 2016. "Experimental model validation and thermodynamic assessment on high percentage (up to 70%) biomass co-gasification at the 253MWe integrated gasification combined cycle power plant in Buggenum, The Neth," Applied Energy, Elsevier, vol. 168(C), pages 381-393.
    12. Chen, Shiyi & Xiang, Wenguo & Wang, Dong & Xue, Zhipeng, 2012. "Incorporating IGCC and CaO sorption-enhanced process for power generation with CO2 capture," Applied Energy, Elsevier, vol. 95(C), pages 285-294.
    13. Forman, Clemens & Gootz, Matthias & Wolfersdorf, Christian & Meyer, Bernd, 2017. "Coupling power generation with syngas-based chemical synthesis," Applied Energy, Elsevier, vol. 198(C), pages 180-191.
    14. Schakel, Wouter & Meerman, Hans & Talaei, Alireza & Ramírez, Andrea & Faaij, André, 2014. "Comparative life cycle assessment of biomass co-firing plants with carbon capture and storage," Applied Energy, Elsevier, vol. 131(C), pages 441-467.
    15. Kaniyal, Ashok A. & van Eyk, Philip J. & Nathan, Graham J., 2016. "Storage capacity assessment of liquid fuels production by solar gasification in a packed bed reactor using a dynamic process model," Applied Energy, Elsevier, vol. 173(C), pages 578-588.
    16. Brouwer, Anne Sjoerd & van den Broek, Machteld & Seebregts, Ad & Faaij, André, 2015. "Operational flexibility and economics of power plants in future low-carbon power systems," Applied Energy, Elsevier, vol. 156(C), pages 107-128.
    17. Farhat, Karim & Reichelstein, Stefan, 2016. "Economic value of flexible hydrogen-based polygeneration energy systems," Applied Energy, Elsevier, vol. 164(C), pages 857-870.
    18. Jana, Kuntal & Ray, Avishek & Majoumerd, Mohammad Mansouri & Assadi, Mohsen & De, Sudipta, 2017. "Polygeneration as a future sustainable energy solution – A comprehensive review," Applied Energy, Elsevier, vol. 202(C), pages 88-111.
    19. Kohl, Thomas & Laukkanen, Timo & Järvinen, Mika & Fogelholm, Carl-Johan, 2013. "Energetic and environmental performance of three biomass upgrading processes integrated with a CHP plant," Applied Energy, Elsevier, vol. 107(C), pages 124-134.
    20. Zhao, Ying-jie & Zhang, Yu-ke & Cui, Yang & Duan, Yuan-yuan & Huang, Yi & Wei, Guo-qiang & Mohamed, Usama & Shi, Li-juan & Yi, Qun & Nimmo, William, 2022. "Pinch combined with exergy analysis for heat exchange network and techno-economic evaluation of coal chemical looping combustion power plant with CO2 capture," Energy, Elsevier, vol. 238(PA).
    21. Yang, F. & Meerman, J.C. & Faaij, A.P.C., 2021. "Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meerman, J.C. & Ramírez, A. & Turkenburg, W.C. & Faaij, A.P.C., 2012. "Performance of simulated flexible integrated gasification polygeneration facilities, Part B: Economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6083-6102.
    2. Lindfeldt, Erik G. & Saxe, Maria & Magnusson, Mimmi & Mohseni, Farzad, 2010. "Strategies for a road transport system based on renewable resources - The case of an import-independent Sweden in 2025," Applied Energy, Elsevier, vol. 87(6), pages 1836-1845, June.
    3. Argenton, C. & Willems, Bert, 2012. "Exclusivity contracts, insurance and financial market foreclosure," Other publications TiSEM 0f89b9a7-2b95-482d-9eea-d, Tilburg University, School of Economics and Management.
    4. Sergey Filippov & Kálmán Kalotay, 2009. "New Europe’s Promise for Life Sciences," Chapters, in: Wilfred Dolfsma & Geert Duysters & Ionara Costa (ed.), Multinationals and Emerging Economies, chapter 3, Edward Elgar Publishing.
    5. Sharif, Naubahar & Huang, Can, 2012. "Innovation strategy, firm survival and relocation: The case of Hong Kong-owned manufacturing in Guangdong Province, China," Research Policy, Elsevier, vol. 41(1), pages 69-78.
    6. World Bank, 2010. "Paraguay Poverty Assessment : Determinants and Challenges for Poverty Reduction [Paraguay - Estudio de pobreza : determinantes y desafíos para la reduccion de la pobreza]," World Bank Publications - Reports 12585, The World Bank Group.
    7. Carolyn Cordery & Rachel Baskerville & Brenda Porter, 2010. "Control or collaboration?," Accounting, Auditing & Accountability Journal, Emerald Group Publishing Limited, vol. 23(6), pages 793-813, August.
    8. Berrang-Ford, Lea & Dingle, Kathryn & Ford, James D. & Lee, Celine & Lwasa, Shuaib & Namanya, Didas B. & Henderson, Jim & Llanos, Alejandro & Carcamo, Cesar & Edge, Victoria, 2012. "Vulnerability of indigenous health to climate change: A case study of Uganda's Batwa Pygmies," Social Science & Medicine, Elsevier, vol. 75(6), pages 1067-1077.
    9. Philip Antwi-Agyei & Andrew Dougill & Evan Fraser & Lindsay Stringer, 2013. "Characterising the nature of household vulnerability to climate variability: empirical evidence from two regions of Ghana," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(4), pages 903-926, August.
    10. Fischer, Klara, 2016. "Why new crop technology is not scale-neutral—A critique of the expectations for a crop-based African Green Revolution," Research Policy, Elsevier, vol. 45(6), pages 1185-1194.
    11. Catherine N. Munyua & Isabel N. Wagara, 2015. "Diversification and a multidisciplinary approach for raising agriculture production and attaining food security in smallholder farming systems of sub-Saharan Africa," Asian Journal of Agriculture and rural Development, Asian Economic and Social Society, vol. 5(10), pages 218-224, October.
    12. Winfield, Mark & Gibson, Robert B. & Markvart, Tanya & Gaudreau, Kyrke & Taylor, Jennifer, 2010. "Implications of sustainability assessment for electricity system design: The case of the Ontario Power Authority's integrated power system plan," Energy Policy, Elsevier, vol. 38(8), pages 4115-4126, August.
    13. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    14. Sreedhar, I. & Nahar, Tanisha & Venugopal, A. & Srinivas, B., 2017. "Carbon capture by absorption – Path covered and ahead," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1080-1107.
    15. Gerssen-Gondelach, S.J. & Saygin, D. & Wicke, B. & Patel, M.K. & Faaij, A.P.C., 2014. "Competing uses of biomass: Assessment and comparison of the performance of bio-based heat, power, fuels and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 964-998.
    16. Holmgren, Kristina M. & Berntsson, Thore & Andersson, Eva & Rydberg, Tomas, 2012. "System aspects of biomass gasification with methanol synthesis – Process concepts and energy analysis," Energy, Elsevier, vol. 45(1), pages 817-828.
    17. Clausen, Lasse R., 2014. "Integrated torrefaction vs. external torrefaction – A thermodynamic analysis for the case of a thermochemical biorefinery," Energy, Elsevier, vol. 77(C), pages 597-607.
    18. Wicke, Birka & Smeets, Edward & Tabeau, Andrzej & Hilbert, Jorge & Faaij, André, 2009. "Macroeconomic impacts of bioenergy production on surplus agricultural land--A case study of Argentina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2463-2473, December.
    19. Andreas Bielig, 2015. "Intellectual property and economic development in Germany: empirical evidence for 1999–2009," European Journal of Law and Economics, Springer, vol. 39(3), pages 607-622, June.
    20. Johansson, Daniella & Franck, Per-Åke & Berntsson, Thore, 2012. "Hydrogen production from biomass gasification in the oil refining industry – A system analysis," Energy, Elsevier, vol. 38(1), pages 212-227.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:6:p:2563-2587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.