IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v3y2010i2p216-240d7189.html
   My bibliography  Save this article

Gasification Processes Old and New: A Basic Review of the Major Technologies

Author

Listed:
  • Ronald W. Breault

    (NETL-US DOE, PO Box 880 Morgantown, WV 26507, USA)

Abstract

This paper has been put together to provide a single source document that not only reviews the historical development of gasification but also compares the process to combustion. It also provides a short discussion on integrated gasification and combined cycle processes. The major focus of the paper is to describe the twelve major gasifiers being marketed today. Some of these are already fully developed while others are in various stages of development. The hydrodynamics and kinetics of each are reviewed along with the most likely gas composition from each of the technologies when using a variety of fuels under different conditions from air blown to oxygen blown and atmospheric pressure to several atmospheres.

Suggested Citation

  • Ronald W. Breault, 2010. "Gasification Processes Old and New: A Basic Review of the Major Technologies," Energies, MDPI, vol. 3(2), pages 1-25, February.
  • Handle: RePEc:gam:jeners:v:3:y:2010:i:2:p:216-240:d:7189
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/3/2/216/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/3/2/216/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinsu Kim & Hyunmin Oh & Seokyoung Lee & Young-Seek Yoon, 2018. "Advanced One-Dimensional Entrained-Flow Gasifier Model Considering Melting Phenomenon of Ash," Energies, MDPI, vol. 11(4), pages 1-14, April.
    2. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    3. Bassano, Claudia & Deiana, Paolo & Vilardi, Giorgio & Verdone, Nicola, 2020. "Modeling and economic evaluation of carbon capture and storage technologies integrated into synthetic natural gas and power-to-gas plants," Applied Energy, Elsevier, vol. 263(C).
    4. Anirudh Singh & Atul Dhar & Parmod Kumar & Satvasheel Powar, 2022. "Computational Study on Parametric Variation with Solar Heat Induction of an Entrained Flow Gasifier," Energies, MDPI, vol. 15(11), pages 1-17, May.
    5. Marco Mancini & Andreas Schwabauer, 2023. "On the Thermal Stability of a Counter-Current Fixed-Bed Gasifier," Energies, MDPI, vol. 16(9), pages 1-36, April.
    6. Squadrito, Gaetano & Maggio, Gaetano & Nicita, Agatino, 2023. "The green hydrogen revolution," Renewable Energy, Elsevier, vol. 216(C).
    7. Maciej Żołądek & Alexandros Kafetzis & Rafał Figaj & Kyriakos Panopoulos, 2022. "Energy-Economic Assessment of Islanded Microgrid with Wind Turbine, Photovoltaic Field, Wood Gasifier, Battery, and Hydrogen Energy Storage," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    8. Lee, Yeol-Lim & Kim, Kyoung-Jin & Hong, Ga-Ram & Ahn, Seon-Yong & Kim, Beom-Jun & Shim, Jae-Oh & Roh, Hyun-Seog, 2021. "Highly sulfur tolerant and regenerable Pt/CeO2 catalyst for waste to energy," Renewable Energy, Elsevier, vol. 178(C), pages 334-343.
    9. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.
    10. Meerman, J.C. & Ramírez, A. & Turkenburg, W.C. & Faaij, A.P.C., 2011. "Performance of simulated flexible integrated gasification polygeneration facilities. Part A: A technical-energetic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2563-2587, August.
    11. Koytsoumpa, Efthymia Ioanna & Karellas, Sotirios, 2018. "Equilibrium and kinetic aspects for catalytic methanation focusing on CO2 derived Substitute Natural Gas (SNG)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 536-550.
    12. Liang Meng & Ahmed Alengebawy & Ping Ai & Keda Jin & Mengdi Chen & Yulong Pan, 2020. "Techno-Economic Assessment of Three Modes of Large-Scale Crop Residue Utilization Projects in China," Energies, MDPI, vol. 13(14), pages 1-19, July.
    13. Mehrdad Massoudi & Ping Wang, 2013. "Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag," Energies, MDPI, vol. 6(2), pages 1-32, February.
    14. Kim, Jinsu & Kim, Jungil & Oh, Hyunmin & Lee, Seokyoung & Lee, In-Beum & Yoon, Young-Seek, 2022. "Techno-economic and environmental impact analysis of tuyere injection of hot reducing gas from low-rank coal gasification in blast furnace," Energy, Elsevier, vol. 241(C).
    15. Niu, Miaomiao & Huang, Yaji & Jin, Baosheng & Liang, Shaohua & Dong, Qing & Gu, Haiming & Sun, Rongyue, 2019. "A novel two-stage enriched air biomass gasification for producing low-tar high heating value fuel gas: Pilot verification and performance analysis," Energy, Elsevier, vol. 173(C), pages 511-522.
    16. Andrius Tamošiūnas & Ajmia Chouchène & Pranas Valatkevičius & Dovilė Gimžauskaitė & Mindaugas Aikas & Rolandas Uscila & Makrem Ghorbel & Mejdi Jeguirim, 2017. "The Potential of Thermal Plasma Gasification of Olive Pomace Charcoal," Energies, MDPI, vol. 10(5), pages 1-14, May.
    17. Wang, Dandan & Li, Sheng & He, Song & Gao, Lin, 2019. "Coal to substitute natural gas based on combined coal-steam gasification and one-step methanation," Applied Energy, Elsevier, vol. 240(C), pages 851-859.
    18. Houssame Boujjat & Sylvain Rodat & Stéphane Abanades, 2020. "Solar-hybrid Thermochemical Gasification of Wood Particles and Solid Recovered Fuel in a Continuously-Fed Prototype Reactor," Energies, MDPI, vol. 13(19), pages 1-15, October.
    19. Tang, Genyang & Gu, Jing & Huang, Zhen & Yuan, Haoran & Chen, Yong, 2022. "Cellulose gasification with Ca–Fe oxygen carrier in chemical-looping process," Energy, Elsevier, vol. 239(PD).
    20. Ping Wang & Mehrdad Massoudi, 2013. "Slag Behavior in Gasifiers. Part I: Influence of Coal Properties and Gasification Conditions," Energies, MDPI, vol. 6(2), pages 1-23, February.
    21. Md Sumon Reza & Zhanar Baktybaevna Iskakova & Shammya Afroze & Kairat Kuterbekov & Asset Kabyshev & Kenzhebatyr Zh. Bekmyrza & Marzhan M. Kubenova & Muhammad Saifullah Abu Bakar & Abul K. Azad & Hrido, 2023. "Influence of Catalyst on the Yield and Quality of Bio-Oil for the Catalytic Pyrolysis of Biomass: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-39, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:3:y:2010:i:2:p:216-240:d:7189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.