IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v263y2020ics0306261920301021.html
   My bibliography  Save this article

Modeling and economic evaluation of carbon capture and storage technologies integrated into synthetic natural gas and power-to-gas plants

Author

Listed:
  • Bassano, Claudia
  • Deiana, Paolo
  • Vilardi, Giorgio
  • Verdone, Nicola

Abstract

The production of synthetic natural gas from coal and biomass gasification made it possible to obtain a product that can be used to replace easily the standard natural gas in the existing infrastructures. This paper follows and presents a study that was conducted on a synthetic natural gas plant integrated with carbon capture and storage technologies. The recent growth in the use of energy coming from renewable sources requires that balancing measures be taken for electricity grids, which, as can be easily imagined, is best accomplished by using multiple energy storage technologies. In particular, the power-to-gas technology allows renewable electrical energy to be transformed into methane via electrolysis and subsequent methanation. Moreover, the production of synthetic natural gas can be enhanced by using concentrated CO2 emitted by synthetic natural gas plants, coupling the coal gasification and methanation processes within the same plant. This paper compares and evaluates two distinct process configurations and their implementation with power-to-gas technology in Aspen Plus v.8. During the study, it was analyzed how the introduction of carbon capture and storage technologies affect the overall energy balance, as well as the individual performances of each configuration. The two cases proved to have similar efficiency; it was also observed that the integration of and carbon capture and storage technologies resulted in a negligible reduction in the efficiency of the system (approximately 1%). The integration of power-to-gas technologies led to a decrease in the efficiency of the system up to 30%. Based on the current emission allowances specified in the rules of the regulated market of CO2, it was also assessed how such technologies would be sustainable in terms of costs derived from the production of gas.. An analysis was in fact performed to estimate the costs associated with this type of plant and the results showed that the introduction of carbon capture and storage technologies in synthetic natural gas plants had a lower impact on the costs related to both the plant and the synthetic natural gas. In this respect, a sensitivity analysis of the most influent factors was performed as well. The results showed that, when it comes to the production of gas in in the power-to-gas process, the specific cost strongly depends on the price of electricity and the operating hours.

Suggested Citation

  • Bassano, Claudia & Deiana, Paolo & Vilardi, Giorgio & Verdone, Nicola, 2020. "Modeling and economic evaluation of carbon capture and storage technologies integrated into synthetic natural gas and power-to-gas plants," Applied Energy, Elsevier, vol. 263(C).
  • Handle: RePEc:eee:appene:v:263:y:2020:i:c:s0306261920301021
    DOI: 10.1016/j.apenergy.2020.114590
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920301021
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114590?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bailera, Manuel & Lisbona, Pilar & Romeo, Luis M. & Espatolero, Sergio, 2017. "Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 292-312.
    2. McKenna, R.C. & Bchini, Q. & Weinand, J.M. & Michaelis, J. & König, S. & Köppel, W. & Fichtner, W., 2018. "The future role of Power-to-Gas in the energy transition: Regional and local techno-economic analyses in Baden-Württemberg," Applied Energy, Elsevier, vol. 212(C), pages 386-400.
    3. Ronald W. Breault, 2010. "Gasification Processes Old and New: A Basic Review of the Major Technologies," Energies, MDPI, vol. 3(2), pages 1-25, February.
    4. Fan, Jing-Li & Xu, Mao & Li, Fengyu & Yang, Lin & Zhang, Xian, 2018. "Carbon capture and storage (CCS) retrofit potential of coal-fired power plants in China: The technology lock-in and cost optimization perspective," Applied Energy, Elsevier, vol. 229(C), pages 326-334.
    5. Bailera, Manuel & Peña, Begoña & Lisbona, Pilar & Romeo, Luis M., 2018. "Decision-making methodology for managing photovoltaic surplus electricity through Power to Gas: Combined heat and power in urban buildings," Applied Energy, Elsevier, vol. 228(C), pages 1032-1045.
    6. Fang, Xin & Cui, Hantao & Yuan, Haoyu & Tan, Jin & Jiang, Tao, 2019. "Distributionally-robust chance constrained and interval optimization for integrated electricity and natural gas systems optimal power flow with wind uncertainties," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. van Leeuwen, Charlotte & Mulder, Machiel, 2018. "Power-to-gas in electricity markets dominated by renewables," Applied Energy, Elsevier, vol. 232(C), pages 258-272.
    8. McDonagh, Shane & O'Shea, Richard & Wall, David M. & Deane, J.P. & Murphy, Jerry D., 2018. "Modelling of a power-to-gas system to predict the levelised cost of energy of an advanced renewable gaseous transport fuel," Applied Energy, Elsevier, vol. 215(C), pages 444-456.
    9. Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
    10. Li, Sheng & Ji, Xiaozhou & Zhang, Xiaosong & Gao, Lin & Jin, Hongguang, 2014. "Coal to SNG: Technical progress, modeling and system optimization through exergy analysis," Applied Energy, Elsevier, vol. 136(C), pages 98-109.
    11. Jiang, Yuan & Bhattacharyya, Debangsu, 2016. "Process modeling of direct coal-biomass to liquids (CBTL) plants with shale gas utilization and CO2 capture and storage (CCS)," Applied Energy, Elsevier, vol. 183(C), pages 1616-1632.
    12. Valerie Eveloy & Tesfaldet Gebreegziabher, 2018. "A Review of Projected Power-to-Gas Deployment Scenarios," Energies, MDPI, vol. 11(7), pages 1-52, July.
    13. Parra, David & Zhang, Xiaojin & Bauer, Christian & Patel, Martin K., 2017. "An integrated techno-economic and life cycle environmental assessment of power-to-gas systems," Applied Energy, Elsevier, vol. 193(C), pages 440-454.
    14. Gu, Chenghong & Tang, Can & Xiang, Yue & Xie, Da, 2019. "Power-to-gas management using robust optimisation in integrated energy systems," Applied Energy, Elsevier, vol. 236(C), pages 681-689.
    15. Buttler, Alexander & Spliethoff, Hartmut, 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2440-2454.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xiaoyuan & Chen, Yu & Zhang, Mingshun & Jiang, Shan & Gou, Huayu & Pang, Zhou & Shen, Boyang, 2021. "Hospital-oriented quad-generation (HOQG)—A combined cooling, heating, power and gas (CCHPG) system," Applied Energy, Elsevier, vol. 300(C).
    2. Enrico Marinelli & Serena Radini & Çağrı Akyol & Massimiliano Sgroi & Anna Laura Eusebi & Gian Battista Bischetti & Adriano Mancini & Francesco Fatone, 2021. "Water-Energy-Food-Climate Nexus in an Integrated Peri-Urban Wastewater Treatment and Reuse System: From Theory to Practice," Sustainability, MDPI, vol. 13(19), pages 1-13, October.
    3. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    4. María Alejandra Décima & Simone Marzeddu & Margherita Barchiesi & Camilla Di Marcantonio & Agostina Chiavola & Maria Rosaria Boni, 2021. "A Review on the Removal of Carbamazepine from Aqueous Solution by Using Activated Carbon and Biochar," Sustainability, MDPI, vol. 13(21), pages 1-50, October.
    5. Adeel Arif & Muhammad Rizwan & Ali Elkamel & Luqman Hakeem & Muhammad Zaman, 2020. "Optimal Selection of Integrated Electricity Generation Systems for the Power Sector with Low Greenhouse Gas (GHG) Emissions," Energies, MDPI, vol. 13(17), pages 1-37, September.
    6. Weimann, Lukas & Dubbink, Guus & van der Ham, Louis & Gazzani, Matteo, 2023. "A thermodynamic-based mixed-integer linear model of post-combustion carbon capture for reliable use in energy system optimisation," Applied Energy, Elsevier, vol. 336(C).
    7. Attila Bai & Péter Balogh & Adrián Nagy & Zoltán Csedő & Botond Sinóros-Szabó & Gábor Pintér & Sanjeev Kumar Prajapati & Amit Singh & Zoltán Gabnai, 2023. "Economic Evaluation of a 1 MW el Capacity Power-to-Biomethane System," Energies, MDPI, vol. 16(24), pages 1-27, December.
    8. Zhang, Quancong & Guo, Xiaoxue & Yao, Xu & Cao, Zhikai & Sha, Yong & Chen, Binghui & Zhou, Hua, 2020. "Modeling, simulation, and systematic analysis of high-temperature adiabatic fixed-bed process of CO methanation with novel catalysts," Applied Energy, Elsevier, vol. 279(C).
    9. Choe, Changgwon & Haider, Junaid & Lim, Hankwon, 2023. "Carbon capture and liquefaction from methane steam reforming unit: 4E’s analysis (Energy, Exergy, Economic, and Environmental)," Applied Energy, Elsevier, vol. 332(C).
    10. Ju, Liwei & Yin, Zhe & Zhou, Qingqing & Li, Qiaochu & Wang, Peng & Tian, Wenxu & Li, Peng & Tan, Zhongfu, 2022. "Nearly-zero carbon optimal operation model and benefit allocation strategy for a novel virtual power plant using carbon capture, power-to-gas, and waste incineration power in rural areas," Applied Energy, Elsevier, vol. 310(C).
    11. Tan, Liping & Cai, Lei & Fu, Yidan & Zhou, Zining & Guan, Yanwen, 2023. "Numerical investigation of biomass and liquefied natural gas driven oxy-fuel combustion power system," Renewable Energy, Elsevier, vol. 208(C), pages 94-104.
    12. Vishal Ram & Surender Reddy Salkuti, 2023. "An Overview of Major Synthetic Fuels," Energies, MDPI, vol. 16(6), pages 1-35, March.
    13. Choe, Changgwon & Cheon, Seunghyun & Kim, Heehyang & Lim, Hankwon, 2023. "Mitigating climate change for negative CO2 emission via syngas methanation: Techno-economic and life-cycle assessments of renewable methane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    14. Simone Marzeddu & Andrea Cappelli & Andrea Ambrosio & María Alejandra Décima & Paolo Viotti & Maria Rosaria Boni, 2021. "A Life Cycle Assessment of an Energy-Biochar Chain Involving a Gasification Plant in Italy," Land, MDPI, vol. 10(11), pages 1-29, November.
    15. Zhong, Like & Yao, Erren & Zou, Hansen & Xi, Guang, 2022. "Thermodynamic and economic analysis of a directly solar-driven power-to-methane system by detailed distributed parameter method," Applied Energy, Elsevier, vol. 312(C).
    16. German Dominguez-Gonzalez & Jose Ignacio Muñoz-Hernandez & Derek Bunn & Carlos Jesus Garcia-Checa, 2022. "Integration of Hydrogen and Synthetic Natural Gas within Legacy Power Generation Facilities," Energies, MDPI, vol. 15(12), pages 1-27, June.
    17. Katla, Daria & Jurczyk, Michał & Skorek-Osikowska, Anna & Uchman, Wojciech, 2021. "Analysis of the integrated system of electrolysis and methanation units for the production of synthetic natural gas (SNG)," Energy, Elsevier, vol. 237(C).
    18. Maria Alessandra Ancona & Vincenzo Antonucci & Lisa Branchini & Francesco Catena & Andrea De Pascale & Alessandra Di Blasi & Marco Ferraro & Cristina Italiano & Francesco Melino & Antonio Vita, 2022. "Parametric Thermo-Economic Analysis of a Power-to-Gas Energy System with Renewable Input, High Temperature Co-Electrolysis and Methanation," Energies, MDPI, vol. 15(5), pages 1-25, February.
    19. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    20. Uchman, Wojciech & Skorek-Osikowska, Anna & Jurczyk, Michał & Węcel, Daniel, 2020. "The analysis of dynamic operation of power-to-SNG system with hydrogen generator powered with renewable energy, hydrogen storage and methanation unit," Energy, Elsevier, vol. 213(C).
    21. Salehi, Javad & Namvar, Amin & Gazijahani, Farhad Samadi & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Effect of power-to-gas technology in energy hub optimal operation and gas network congestion reduction," Energy, Elsevier, vol. 240(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eveloy, Valerie, 2019. "Hybridization of solid oxide electrolysis-based power-to-methane with oxyfuel combustion and carbon dioxide utilization for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 550-571.
    2. Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
    3. Inkeri, Eero & Tynjälä, Tero & Karjunen, Hannu, 2021. "Significance of methanation reactor dynamics on the annual efficiency of power-to-gas -system," Renewable Energy, Elsevier, vol. 163(C), pages 1113-1126.
    4. Qi, Meng & Park, Jinwoo & Landon, Robert Stephen & Kim, Jeongdong & Liu, Yi & Moon, Il, 2022. "Continuous and flexible Renewable-Power-to-Methane via liquid CO2 energy storage: Revisiting the techno-economic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    5. Eveloy, Valerie & Gebreegziabher, Tesfaldet, 2019. "Excess electricity and power-to-gas storage potential in the future renewable-based power generation sector in the United Arab Emirates," Energy, Elsevier, vol. 166(C), pages 426-450.
    6. Valerie Eveloy & Tesfaldet Gebreegziabher, 2018. "A Review of Projected Power-to-Gas Deployment Scenarios," Energies, MDPI, vol. 11(7), pages 1-52, July.
    7. Koj, Jan Christian & Wulf, Christina & Zapp, Petra, 2019. "Environmental impacts of power-to-X systems - A review of technological and methodological choices in Life Cycle Assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 865-879.
    8. Duncan, Corey & Roche, Robin & Jemei, Samir & Pera, Marie-Cécile, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Applied Energy, Elsevier, vol. 315(C).
    9. Gorre, Jachin & Ortloff, Felix & van Leeuwen, Charlotte, 2019. "Production costs for synthetic methane in 2030 and 2050 of an optimized Power-to-Gas plant with intermediate hydrogen storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Corey Duncan & Robin Roche & Samir Jemei & Marie-Cécile Péra, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Post-Print hal-03692975, HAL.
    11. Percebois, Jacques & Pommeret, Stanislas, 2019. "Storage cost induced by a large substitution of nuclear by intermittent renewable energies: The French case," Energy Policy, Elsevier, vol. 135(C).
    12. Bailera, Manuel & Peña, Begoña & Lisbona, Pilar & Romeo, Luis M., 2018. "Decision-making methodology for managing photovoltaic surplus electricity through Power to Gas: Combined heat and power in urban buildings," Applied Energy, Elsevier, vol. 228(C), pages 1032-1045.
    13. Strübing, Dietmar & Moeller, Andreas B. & Mößnang, Bettina & Lebuhn, Michael & Drewes, Jörg E. & Koch, Konrad, 2018. "Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation," Applied Energy, Elsevier, vol. 232(C), pages 543-554.
    14. Gábor Pörzse & Zoltán Csedő & Máté Zavarkó, 2021. "Disruption Potential Assessment of the Power-to-Methane Technology," Energies, MDPI, vol. 14(8), pages 1-21, April.
    15. McDonagh, Shane & Deane, Paul & Rajendran, Karthik & Murphy, Jerry D., 2019. "Are electrofuels a sustainable transport fuel? Analysis of the effect of controls on carbon, curtailment, and cost of hydrogen," Applied Energy, Elsevier, vol. 247(C), pages 716-730.
    16. Janke, Leandro & McDonagh, Shane & Weinrich, Sören & Murphy, Jerry & Nilsson, Daniel & Hansson, Per-Anders & Nordberg, Åke, 2020. "Optimizing power-to-H2 participation in the Nord Pool electricity market: Effects of different bidding strategies on plant operation," Renewable Energy, Elsevier, vol. 156(C), pages 820-836.
    17. Quarton, Christopher J. & Samsatli, Sheila, 2018. "Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 302-316.
    18. Gray, Nathan & O'Shea, Richard & Smyth, Beatrice & Lens, Piet N.L. & Murphy, Jerry D., 2022. "What is the energy balance of electrofuels produced through power-to-fuel integration with biogas facilities?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    19. Carlos V. Miguel & Adélio Mendes & Luís M. Madeira, 2018. "An Overview of the Portuguese Energy Sector and Perspectives for Power-to-Gas Implementation," Energies, MDPI, vol. 11(12), pages 1-20, November.
    20. Thema, M. & Bauer, F. & Sterner, M., 2019. "Power-to-Gas: Electrolysis and methanation status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 775-787.

    More about this item

    Keywords

    SNG; CO2 utilization; Economics analysis; Power-to-gas;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:263:y:2020:i:c:s0306261920301021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.