IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224003955.html
   My bibliography  Save this article

Towards energy transition: A novel day-ahead operation scheduling strategy for demand response and hybrid energy storage systems in smart grid

Author

Listed:
  • Elsir, Mohamed
  • Al-Sumaiti, Ameena Saad
  • El Moursi, Mohamed Shawky

Abstract

Fossil fuel power plants continue to contribute significantly to carbon emissions, necessitating a transition towards cleaner energy sources. Despite the growing presence of renewables within the power systems, the incorporation of carbon capture technologies into the traditional thermal power plants holds great potential in emissions reduction. In this paper, the integration of renewable energy sources (RES) and coal-fired power generation units outfitted with carbon capture schemes is addressed. Multiple demand response (DR) programs and hydropower plants are strategically utilized to increase the power system flexibility. To effectively plan the day-ahead (DA) operation of the power system, a presumed market-clearing framework is adopted and modelled as a risk-constrained two-objective stochastic mixed-integer linear programming problem. The proposed framework helps to tackle the uncertainties related to RES and demand variations by employing a hidden Markovian process (HMP) technique. To simultaneously minimize the system’s operational costs and CO2 emissions, an enhanced version of the augmented ɛ-constraint method is employed. To prove its value, the proposed framework is devoted to the 24-bus IEEE reliability test system (IEEE-RTS). The system features substantial penetration of RES (exceeding 87% of peak load) and standard DR options capacities (less than 25% of peak load). The results show a 24% reduction in load peaks, an over 63% decrease in emissions, and a 17% reduction in the overall operation costs.

Suggested Citation

  • Elsir, Mohamed & Al-Sumaiti, Ameena Saad & El Moursi, Mohamed Shawky, 2024. "Towards energy transition: A novel day-ahead operation scheduling strategy for demand response and hybrid energy storage systems in smart grid," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003955
    DOI: 10.1016/j.energy.2024.130623
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003955
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130623?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.