IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i11p4873-d1664633.html
   My bibliography  Save this article

Optimal and Sustainable Scheduling of Integrated Energy System Coupled with CCS-P2G and Waste-to-Energy Under the “Green-Carbon” Offset Mechanism

Author

Listed:
  • Xin Huang

    (School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China)

  • Junjie Zhong

    (School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China)

  • Maner Xiao

    (School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China)

  • Yuhui Zhu

    (School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China)

  • Haojie Zheng

    (School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

  • Bensheng Zheng

    (School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China)

Abstract

Waste-to-energy (WTE) is considered the most promising method for municipal solid waste treatment. An integrated energy system (IES) with carbon capture systems (CCS) and power-to-gas (P2G) can reduce carbon emissions. The incorporation of a “green-carbon” offset mechanism further enhances renewable energy consumption. Therefore, this study constructs a WTE-IES hybrid system, which conducts multi-dimensional integration of IES-WTP, CCS-P2G, photovoltaic (PV), wind turbine (WT), multiple energy storage technologies, and the “green-carbon” offset mechanism. It breaks through the limitations of traditional single-technology optimization and achieves the coordinated improvement of energy, environmental, and economic triple benefits. First, waste incineration power generation is coupled into the IES. A mathematical model is then established for the waste incineration and CCS-P2G IES. The CO 2 produced by waste incineration is absorbed and reused. Finally, the “green-carbon” offset mechanism is introduced to convert tradable green certificates (TGCs) into carbon emission rights. This approach ensures energy demand satisfaction while minimizing carbon emissions. Economic incentives are also provided for the carbon capture and conversion processes. A case study of an industrial park is conducted for validation. The industrial park has achieved a reduction in carbon emissions of approximately 72.1% and a reduction in the total cost of approximately 33.5%. The results demonstrate that the proposed method significantly reduces carbon emissions. The energy utilization efficiency and system economic performance are also improved. This study provides theoretical and technical support for the low-carbon development of future IES.

Suggested Citation

  • Xin Huang & Junjie Zhong & Maner Xiao & Yuhui Zhu & Haojie Zheng & Bensheng Zheng, 2025. "Optimal and Sustainable Scheduling of Integrated Energy System Coupled with CCS-P2G and Waste-to-Energy Under the “Green-Carbon” Offset Mechanism," Sustainability, MDPI, vol. 17(11), pages 1-27, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4873-:d:1664633
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/11/4873/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/11/4873/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Iván D. Roa & Jorge R. Henriquez & Emmanuel D. Dutra & Rômulo S. C. Menezes & Monaliza M. M. Andrade & Edvaldo P. Santos Junior & Luiz Célio S. Rocha & Paulo Rotella Junior, 2024. "Economic Feasibility of Biogas Microgeneration from Food Waste: Potential for Sustainable Energy in Northeastern Brazil," Sustainability, MDPI, vol. 16(23), pages 1-17, November.
    2. He, Liangce & Lu, Zhigang & Zhang, Jiangfeng & Geng, Lijun & Zhao, Hao & Li, Xueping, 2018. "Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas," Applied Energy, Elsevier, vol. 224(C), pages 357-370.
    3. Srećko Ćurčić & Dragan Milićević & Nataša Kilibarda & Aleksandar Peulić, 2025. "Assessing Biogas Production Potential from Organic Waste and Livestock Byproducts in a Serbian Municipality: Implications for Sustainable Food Systems," Sustainability, MDPI, vol. 17(7), pages 1-19, April.
    4. Zhenglong Wang & Jiahui Wu & Yang Kou & Menglin Zhang & Huan Jiang, 2024. "Collaborative Optimization Scheduling of Source-Network-Load-Storage System Based on Ladder-Type Green Certificate–Carbon Joint Trading Mechanism and Integrated Demand Response," Sustainability, MDPI, vol. 16(22), pages 1-26, November.
    5. Li, Xue & Zhang, Rufeng & Bai, Linquan & Li, Guoqing & Jiang, Tao & Chen, Houhe, 2018. "Stochastic low-carbon scheduling with carbon capture power plants and coupon-based demand response," Applied Energy, Elsevier, vol. 210(C), pages 1219-1228.
    6. Khan, Muhammad Sajid & Huan, Qun & Yan, Mi & Ali, Mustajab & Noor, Obaid Ullah & Abid, Muhammad, 2022. "A novel configuration of solar integrated waste-to-energy incineration plant for multi-generational purpose: An effort for achieving maximum performance," Renewable Energy, Elsevier, vol. 194(C), pages 604-620.
    7. Yang, Shenbo & Tan, Zhongfu & Lin, Hongyu & Li, Peng & De, Gejirifu & Zhou, Feng’ao & Ju, Liwei, 2020. "A two-stage optimization model for Park Integrated Energy System operation and benefit allocation considering the effect of Time-Of-Use energy price," Energy, Elsevier, vol. 195(C).
    8. Yuxing Liu & Linjun Zeng & Jie Zeng & Zhenyi Yang & Na Li & Yuxin Li, 2023. "Scheduling Optimization of IEHS with Uncertainty of Wind Power and Operation Mode of CCP," Energies, MDPI, vol. 16(5), pages 1-17, February.
    9. Li, Xu & Deng, Jianhua & Liu, Jichun, 2025. "Energy–carbon–green certificates management strategy for integrated energy system using carbon–green certificates double-direction interaction," Renewable Energy, Elsevier, vol. 238(C).
    10. Tan, Jinjing & Pan, Weiqi & Li, Yang & Hu, Haoming & Zhang, Can, 2023. "Energy-sharing operation strategy of multi-district integrated energy systems considering carbon and renewable energy certificate trading," Applied Energy, Elsevier, vol. 339(C).
    11. Lei, Dayong & Zhang, Zhonghui & Wang, Zhaojun & Zhang, Liuyu & Liao, Wei, 2023. "Long-term, multi-stage low-carbon planning model of electricity-gas-heat integrated energy system considering ladder-type carbon trading mechanism and CCS," Energy, Elsevier, vol. 280(C).
    12. Liu, Dewen & Luo, Zhao & Qin, Jinghui & Wang, Hua & Wang, Gang & Li, Zhao & Zhao, Weijie & Shen, Xin, 2023. "Low-carbon dispatch of multi-district integrated energy systems considering carbon emission trading and green certificate trading," Renewable Energy, Elsevier, vol. 218(C).
    13. Peiyuan Pan & Meiyan Zhang & Gang Xu & Heng Chen & Xiaona Song & Tong Liu, 2020. "Thermodynamic and Economic Analyses of a New Waste-to-Energy System Incorporated with a Biomass-Fired Power Plant," Energies, MDPI, vol. 13(17), pages 1-20, August.
    14. Li, Jiamei & Ai, Qian & Chen, Minyu, 2023. "Strategic behavior modeling and energy management for electric-thermal-carbon-natural gas integrated energy system considering ancillary service," Energy, Elsevier, vol. 278(C).
    15. Lin, Boqiang & Jia, Zhijie, 2019. "Impacts of carbon price level in carbon emission trading market," Applied Energy, Elsevier, vol. 239(C), pages 157-170.
    16. Fan, Mingming & Liu, Linlin, 2025. "Portfolio of China's renewable energy legal measures: Conflicts in application and functional harmonization," Energy, Elsevier, vol. 320(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Runzhuo & Bu, Siqi, 2025. "Evaluation and mitigation of carbon emissions in energy industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    2. Guo, Xiaopeng & Wang, Liyi & Ren, Dongfang, 2025. "Optimal scheduling model for virtual power plant combining carbon trading and green certificate trading," Energy, Elsevier, vol. 318(C).
    3. Elsir, Mohamed & Al-Sumaiti, Ameena Saad & El Moursi, Mohamed Shawky, 2024. "Towards energy transition: A novel day-ahead operation scheduling strategy for demand response and hybrid energy storage systems in smart grid," Energy, Elsevier, vol. 293(C).
    4. Hou, Hui & Ge, Xiangdi & Yan, Yulin & Lu, Yanchao & Zhang, Ji & Dong, Zhao Yang, 2024. "An integrated energy system “green-carbon” offset mechanism and optimization method with Stackelberg game," Energy, Elsevier, vol. 294(C).
    5. Li, Yanbin & Hu, Weikun & Zhang, Feng & Li, Yun, 2025. "Multi-objective collaborative operation optimization of park-level integrated energy system clusters considering green power forecasting and trading," Energy, Elsevier, vol. 319(C).
    6. Zhang, Yue & Wu, Qiong & Ren, Hongbo & Li, Qifen & Zhou, Weisheng, 2024. "Optimal operation of multi-microgrid systems considering multi-level energy-certificate-carbon coupling trading," Renewable Energy, Elsevier, vol. 227(C).
    7. Liu, Dewen & Luo, Zhao & Qin, Jinghui & Wang, Hua & Wang, Gang & Li, Zhao & Zhao, Weijie & Shen, Xin, 2023. "Low-carbon dispatch of multi-district integrated energy systems considering carbon emission trading and green certificate trading," Renewable Energy, Elsevier, vol. 218(C).
    8. Chen, Yuzhu & Guo, Weimin & Lund, Peter D. & Du, Na & Yang, Kun & wang, Jun, 2024. "Configuration optimization of a wind-solar based net-zero emission tri-generation energy system considering renewable power and carbon trading mechanisms," Renewable Energy, Elsevier, vol. 232(C).
    9. Bian, Yifan & Xie, Lirong & Ma, Lan & Zhang, Hangong, 2024. "A novel two-stage energy sharing method for data center cluster considering ‘Carbon-Green Certificate’ coupling mechanism," Energy, Elsevier, vol. 313(C).
    10. Li, Fei & Wang, Dong & Guo, Hengdao & Zhang, Jianhua, 2024. "Distributionally Robust Optimization for integrated energy system accounting for refinement utilization of hydrogen and ladder-type carbon trading mechanism," Applied Energy, Elsevier, vol. 367(C).
    11. Shin, Hansol & Kim, Tae Hyun & Kim, Hyoungtae & Lee, Sungwoo & Kim, Wook, 2019. "Environmental shutdown of coal-fired generators for greenhouse gas reduction: A case study of South Korea," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Yang, Meng & Liu, Yisheng, 2023. "Research on multi-energy collaborative operation optimization of integrated energy system considering carbon trading and demand response," Energy, Elsevier, vol. 283(C).
    13. Zhu, Xiaoxun & Hu, Ming & Xue, Jinfei & Li, Yuxuan & Han, Zhonghe & Gao, Xiaoxia & Wang, Yu & Bao, Linlin, 2024. "Research on multi-time scale integrated energy scheduling optimization considering carbon constraints," Energy, Elsevier, vol. 302(C).
    14. Wang, Xinyu & Chen, Heng & Tong, Xi & Gao, Yue & Pan, Peiyuan & Liu, Wenyi, 2024. "Optimal scheduling of a multi-energy complementary system simultaneously considering the trading of carbon emission and green certificate," Energy, Elsevier, vol. 310(C).
    15. Lei, Dayong & Zhang, Zhonghui & Wang, Zhaojun & Zhang, Liuyu & Liao, Wei, 2023. "Long-term, multi-stage low-carbon planning model of electricity-gas-heat integrated energy system considering ladder-type carbon trading mechanism and CCS," Energy, Elsevier, vol. 280(C).
    16. Gao, Minkun & Xiang, Leijun & Zhu, Shanying & Lin, Qichao, 2024. "Scenario probabilistic data-driven two-stage robust optimal operation strategy for regional integrated energy systems considering ladder-type carbon trading," Renewable Energy, Elsevier, vol. 237(PD).
    17. Lei, Lin & Wu, Nan, 2024. "An optimal scheduling strategy for electricity-thermal synergy and complementarity among multi-microgrid based on cooperative games," Renewable Energy, Elsevier, vol. 237(PA).
    18. Yuxing Liu & Linjun Zeng & Jie Zeng & Zhenyi Yang & Na Li & Yuxin Li, 2023. "Scheduling Optimization of IEHS with Uncertainty of Wind Power and Operation Mode of CCP," Energies, MDPI, vol. 16(5), pages 1-17, February.
    19. Hu, Xuanyi & Liu, Lanbiao & Wang, Daoping, 2024. "How does regional carbon transition affect loan pricing? Evidence from China," Finance Research Letters, Elsevier, vol. 70(C).
    20. Ma, Yixiang & Yu, Lean & Zhang, Guoxing & Lu, Zhiming & Wu, Jiaqian, 2023. "Source-load uncertainty-based multi-objective multi-energy complementary optimal scheduling," Renewable Energy, Elsevier, vol. 219(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4873-:d:1664633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.