Author
Listed:
- He Jiang
(School of Renewable Energy, Shenyang Institute of Engineering, Shenyang 110136, China
Key Laboratory of Regional Multi-Energy System Integration and Control, Shenyang 110136, China)
- Xingyu Liu
(School of Renewable Energy, Shenyang Institute of Engineering, Shenyang 110136, China
Key Laboratory of Regional Multi-Energy System Integration and Control, Shenyang 110136, China)
Abstract
The multi-timescale optimization dispatch method for integrated energy systems proposed in this paper balances sustainability and low-carbon characteristics. It first incorporates shared energy storage resources such as electric vehicles into system dispatch, fully leveraging their spatiotemporal properties to enhance dispatch flexibility and rapid response capabilities for integrating renewable energy and enabling clean power generation. Second, an incentive-penalty mechanism enables effective interaction between the system and the green certificate–carbon joint trading market. Penalties are imposed for failing to meet renewable energy consumption targets or exceeding carbon quotas, while rewards are granted for meeting or exceeding targets. This regulates the system’s renewable energy consumption level and carbon emissions, ensuring robust low-carbon performance. Third, this strategy considers the close coordination between heating, cooling, and electricity demand response measures with the integrated energy system, smoothing load fluctuations to achieve peak shaving and valley filling. Finally, through case study simulations and analysis, the advantages of the multi-timescale dispatch strategy proposed in this paper, in terms of economic feasibility, low-carbon characteristics, and sustainability, are verified.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8899-:d:1766094. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.