Day-Ahead Optimal Scheduling of an Integrated Electricity-Heat-Gas-Cooling-Hydrogen Energy System Considering Stepped Carbon Trading
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Chen, Xing & Lin, Boqiang, 2021. "Towards carbon neutrality by implementing carbon emissions trading scheme: Policy evaluation in China," Energy Policy, Elsevier, vol. 157(C).
- Guandalini, Giulio & Campanari, Stefano & Romano, Matteo C., 2015. "Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment," Applied Energy, Elsevier, vol. 147(C), pages 117-130.
- Mohammad Fazle Rabbi & József Popp & Domicián Máté & Sándor Kovács, 2022. "Energy Security and Energy Transition to Achieve Carbon Neutrality," Energies, MDPI, vol. 15(21), pages 1-18, October.
- Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Zhang, Jinliang & Liu, Ziyi, 2024. "Low carbon economic scheduling model for a park integrated energy system considering integrated demand response, ladder-type carbon trading and fine utilization of hydrogen," Energy, Elsevier, vol. 290(C).
- Chen, Maozhi & Lu, Hao & Chang, Xiqiang & Liao, Haiyan, 2023. "An optimization on an integrated energy system of combined heat and power, carbon capture system and power to gas by considering flexible load," Energy, Elsevier, vol. 273(C).
- Ma, Yiming & Wang, Haixin & Hong, Feng & Yang, Junyou & Chen, Zhe & Cui, Haoqian & Feng, Jiawei, 2021. "Modeling and optimization of combined heat and power with power-to-gas and carbon capture system in integrated energy system," Energy, Elsevier, vol. 236(C).
- Song, Malin & Zheng, Huanyu & Shen, Zhiyang, 2023. "Whether the carbon emissions trading system improves energy efficiency – Empirical testing based on China's provincial panel data," Energy, Elsevier, vol. 275(C).
- Wang, Shouxiang & Wang, Shaomin & Zhao, Qianyu & Dong, Shuai & Li, Hao, 2023. "Optimal dispatch of integrated energy station considering carbon capture and hydrogen demand," Energy, Elsevier, vol. 269(C).
- Abdul Ghani Olabi & Enas Taha Sayed, 2023. "Developments in Hydrogen Fuel Cells," Energies, MDPI, vol. 16(5), pages 1-5, March.
- Qin, Chun & Zhao, Jun & Chen, Long & Liu, Ying & Wang, Wei, 2022. "An adaptive piecewise linearized weighted directed graph for the modeling and operational optimization of integrated energy systems," Energy, Elsevier, vol. 244(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wu, Yanjuan & Wang, Caiwei & Wang, Yunliang, 2024. "Cooperative game optimization scheduling of multi-region integrated energy system based on ADMM algorithm," Energy, Elsevier, vol. 302(C).
- Elsir, Mohamed & Al-Sumaiti, Ameena Saad & El Moursi, Mohamed Shawky, 2024. "Towards energy transition: A novel day-ahead operation scheduling strategy for demand response and hybrid energy storage systems in smart grid," Energy, Elsevier, vol. 293(C).
- Anjie Lu & Jianguo Zhou & Minglei Qin & Danchen Liu, 2024. "Considering Carbon–Hydrogen Coupled Integrated Energy Systems: A Pathway to Sustainable Energy Transition in China Under Uncertainty," Sustainability, MDPI, vol. 16(21), pages 1-32, October.
- Ilea, Flavia-Maria & Cormos, Ana-Maria & Cristea, Vasile-Mircea & Cormos, Calin-Cristian, 2023. "Enhancing the post-combustion carbon dioxide carbon capture plant performance by setpoints optimization of the decentralized multi-loop and cascade control system," Energy, Elsevier, vol. 275(C).
- Wang, Shouxiang & Wang, Shaomin & Zhao, Qianyu & Dong, Shuai & Li, Hao, 2023. "Optimal dispatch of integrated energy station considering carbon capture and hydrogen demand," Energy, Elsevier, vol. 269(C).
- Chen, Maozhi & Lu, Hao & Chang, Xiqiang & Liao, Haiyan, 2023. "An optimization on an integrated energy system of combined heat and power, carbon capture system and power to gas by considering flexible load," Energy, Elsevier, vol. 273(C).
- Zhu, Zhenle & Qu, Zhiguo & Gong, Jianqiang & Li, Jianjun & Xu, Hongtao, 2025. "Robust optimal model for rural integrated energy system incorporating biomass waste utilization and power-to-gas coupling unit considering deep learning-based air conditioning load personalized demand," Energy, Elsevier, vol. 321(C).
- Zhang, Xiaofeng & Liu, Yuting & Zhan, Yu & Yan, Renshi & Mei, Jin & Fu, Ang & Jiao, Fan & Zeng, Rong, 2024. "Multi-scenario optimization and performance evaluation of integrated energy system considering co-scheduling of EVs and stationary energy storage," Renewable Energy, Elsevier, vol. 237(PD).
- Wen, Jiaxing & Jia, Rong & Cao, Ge & Guo, Yi & Jiao, Yang & Li, Wei & Li, Peihang, 2025. "Robust economic scheduling model for virtual power plant considering electrolysis of molten carbonate and dynamic compensation mechanism," Energy, Elsevier, vol. 317(C).
- Liu, Xingnan & Lu, Hao & Zhao, Wenjun & Chen, Yuhang & Shao, Shiru, 2025. "Research on optimal scheduling and source-network-load correlation matching of integrated energy system considering uncertainty," Energy, Elsevier, vol. 321(C).
- Fu, Yue & Huang, Yan & Xin, Haozhe & Liu, Ming & Wang, Liyuan & Yan, Junjie, 2024. "The pressure sliding operation strategy of the carbon capture system integrated within a coal-fired power plant: Influence factors and energy saving potentials," Energy, Elsevier, vol. 307(C).
- Li, Xu & Deng, Jianhua & Liu, Jichun, 2024. "A two-layer and three-stage dynamic demand response game model considering the out of sync response for gases generators," Renewable Energy, Elsevier, vol. 228(C).
- Kun Li & Yulong Ying & Xiangyu Yu & Jingchao Li, 2024. "Optimal Scheduling of Electricity and Carbon in Multi-Park Integrated Energy Systems," Energies, MDPI, vol. 17(9), pages 1-30, April.
- Liu, Shuaidong & Han, Song & Tian, Junling & Rong, Na, 2024. "A multi-objective optimization scheduling approach of integrated energy system considering the exergy efficiency using the variable step-size approximation method," Energy, Elsevier, vol. 311(C).
- Zhu, Xiaoxun & Hu, Ming & Xue, Jinfei & Li, Yuxuan & Han, Zhonghe & Gao, Xiaoxia & Wang, Yu & Bao, Linlin, 2024. "Research on multi-time scale integrated energy scheduling optimization considering carbon constraints," Energy, Elsevier, vol. 302(C).
- Duan, Jiandong & Tian, Qinxing & Gao, Qi & Zhou, Zhipeng, 2025. "Day-ahead and intra-day scheduling of integrated electricity-hydrogen-gas energy system considering spectral risk theory," Energy, Elsevier, vol. 323(C).
- Huang, Shangjiu & Lu, Hao & Chen, Maozhi & Zhao, Wenjun, 2023. "Integrated energy system scheduling considering the correlation of uncertainties," Energy, Elsevier, vol. 283(C).
- Hua Pan & Qunli Wu & Huiling Guo & Jiayi Bai, 2024. "Low-Carbon Optimization Scheduling of Integrated Energy Systems Based on Bilateral Demand Response and Two-Level Stackelberg Game," Energies, MDPI, vol. 17(21), pages 1-26, November.
- Arsani Alina & Stefan George, 2024. "Energy Transition and European Sub-Models. Restructuring EU Economy," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 86-101.
- Yin, Boyi & Zhu, Wenjiang & Tang, Cheng & Wang, Can & Xu, Xinhai, 2025. "Hierarchical optimal scheduling of IES considering SOFC degradation, internal and external uncertainties," Applied Energy, Elsevier, vol. 381(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2249-:d:1644740. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.