IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5547-d1200020.html
   My bibliography  Save this article

Influence of Catalyst on the Yield and Quality of Bio-Oil for the Catalytic Pyrolysis of Biomass: A Comprehensive Review

Author

Listed:
  • Md Sumon Reza

    (Research Institute of New Chemical Technologies, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
    Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei)

  • Zhanar Baktybaevna Iskakova

    (Research Institute of New Chemical Technologies, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan)

  • Shammya Afroze

    (Faculty of Physics and Technical Sciences, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan)

  • Kairat Kuterbekov

    (Faculty of Physics and Technical Sciences, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan)

  • Asset Kabyshev

    (Faculty of Physics and Technical Sciences, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan)

  • Kenzhebatyr Zh. Bekmyrza

    (Faculty of Physics and Technical Sciences, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan)

  • Marzhan M. Kubenova

    (Faculty of Transport and Energy, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan)

  • Muhammad Saifullah Abu Bakar

    (Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei)

  • Abul K. Azad

    (Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei)

  • Hridoy Roy

    (Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh)

  • Md Shahinoor Islam

    (Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
    Department of Textile Engineering, Daffodil International University, Dhaka 1341, Bangladesh)

Abstract

In the modern world, as the population rises and fossil fuel supplies decline, energy demands continue to rise. Moreover, the use of fossil fuels harms the ecology, contributing to pollution and global warming. In order to overcome these difficulties, several approaches are revealed, such as the utilization of biomass as a renewable source of energy. Studies revealed that biomass can be converted into bioenergy via several thermal conversion processes, like pyrolysis, gasification, and torrefaction. Pyrolysis is the most convenient process to obtain three different types of biofuels (biochar as a solid, bio-oil as a liquid, and syngas as a gas). The biofuels produced in this process are normally lower in quality and cannot be used directly as fuel because they contain many undesirable components. Catalytic pyrolysis is one of the best processes to upgrade the quality of biofuels. Several varieties of catalysts are used in the catalytic pyrolysis process (ex situ and in situ). Due to stable operating conditions, both catalytic and non-catalytic pyrolysis procedures produce biochar that has a consistent output. Meanwhile, the effects of catalysts in the catalytic pyrolysis process considerably enhance the quality and quantity of bio-oils and syngas. By removing the unwanted oxygenated and nitrogenous components, the bio-oils produced through the catalytic pyrolysis method have a higher calorific value, reduced viscosity, and improved stability. Many researchers have looked at ways to increase the rate of pyrolysis, whereas a few have focused on maximizing the effects of the factors in order to improve the efficiency of catalytic pyrolysis. This review addresses the impact of catalysts on the catalytic pyrolysis of biomass to enhance the quality of the bio-oils in great detail. Machine learning and techno-economic analysis were investigated, as well as the future potential of the catalytic pyrolysis method for the generation of bio-oil.

Suggested Citation

  • Md Sumon Reza & Zhanar Baktybaevna Iskakova & Shammya Afroze & Kairat Kuterbekov & Asset Kabyshev & Kenzhebatyr Zh. Bekmyrza & Marzhan M. Kubenova & Muhammad Saifullah Abu Bakar & Abul K. Azad & Hrido, 2023. "Influence of Catalyst on the Yield and Quality of Bio-Oil for the Catalytic Pyrolysis of Biomass: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-39, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5547-:d:1200020
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5547/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5547/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Radenahmad, Nikdalila & Azad, Atia Tasfiah & Saghir, Muhammad & Taweekun, Juntakan & Bakar, Muhammad Saifullah Abu & Reza, Md Sumon & Azad, Abul Kalam, 2020. "A review on biomass derived syngas for SOFC based combined heat and power application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Ziyang Kang & Xigai Jia & Yuchen Zhang & Xiaoxuan Kang & Ming Ge & Dong Liu & Chongqing Wang & Zhangxing He, 2022. "A Review on Application of Biochar in the Removal of Pharmaceutical Pollutants through Adsorption and Persulfate-Based AOPs," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
    3. Ronald W. Breault, 2010. "Gasification Processes Old and New: A Basic Review of the Major Technologies," Energies, MDPI, vol. 3(2), pages 1-25, February.
    4. López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
    5. Ana P. R. A. Ferreira & Raisa C. P. Oliveira & Maria Margarida Mateus & Diogo M. F. Santos, 2023. "A Review of the Use of Electrolytic Cells for Energy and Environmental Applications," Energies, MDPI, vol. 16(4), pages 1-33, February.
    6. Pan, Ruming & Martins, Marcio Ferreira & Debenest, Gérald, 2022. "Optimization of oil production through ex-situ catalytic pyrolysis of waste polyethylene with activated carbon," Energy, Elsevier, vol. 248(C).
    7. Elmaz, Furkan & Yücel, Özgün & Mutlu, Ali Yener, 2020. "Predictive modeling of biomass gasification with machine learning-based regression methods," Energy, Elsevier, vol. 191(C).
    8. Ascher, Simon & Watson, Ian & You, Siming, 2022. "Machine learning methods for modelling the gasification and pyrolysis of biomass and waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    9. Md Sumon Reza & Abul K. Azad & Muhammad S. Abu Bakar & Md Rezaul Karim & Mohsen Sharifpur & Juntakan Taweekun, 2022. "Evaluation of Thermochemical Characteristics and Pyrolysis of Fish Processing Waste for Renewable Energy Feedstock," Sustainability, MDPI, vol. 14(3), pages 1-15, January.
    10. Mohammad I. Jahirul & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury & Nanjappa Ashwath, 2012. "Biofuels Production through Biomass Pyrolysis —A Technological Review," Energies, MDPI, vol. 5(12), pages 1-50, November.
    11. Kan, Tao & Strezov, Vladimir & Evans, Tim & He, Jing & Kumar, Ravinder & Lu, Qiang, 2020. "Catalytic pyrolysis of lignocellulosic biomass: A review of variations in process factors and system structure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    13. Md Sumon Reza & Shammya Afroze & Kairat Kuterbekov & Asset Kabyshev & Kenzhebatyr Zh. Bekmyrza & Juntakan Taweekun & Fairuzeta Ja’afar & Muhammad Saifullah Abu Bakar & Abul K. Azad & Hridoy Roy & Md. , 2023. "Ex Situ Catalytic Pyrolysis of Invasive Pennisetum purpureum Grass with Activated Carbon for Upgrading Bio-Oil," Sustainability, MDPI, vol. 15(9), pages 1-20, May.
    14. Jerzak, Wojciech & Kuźnia, Monika, 2021. "Examination of inorganic gaseous species and condensed phases during coconut husk combustion based on thermodynamic equilibrium predictions," Renewable Energy, Elsevier, vol. 167(C), pages 497-507.
    15. Liang, Jie & Shan, Guangcun & Sun, Yifei, 2021. "Catalytic fast pyrolysis of lignocellulosic biomass: Critical role of zeolite catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    16. Lam, Su Shiung & Russell, Alan D. & Chase, Howard A., 2010. "Microwave pyrolysis, a novel process for recycling waste automotive engine oil," Energy, Elsevier, vol. 35(7), pages 2985-2991.
    17. Tripathi, Manoj & Sahu, J.N. & Ganesan, P., 2016. "Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 467-481.
    18. Yang, Ke & Wu, Kai & Zhang, Huiyan, 2022. "Machine learning prediction of the yield and oxygen content of bio-oil via biomass characteristics and pyrolysis conditions," Energy, Elsevier, vol. 254(PB).
    19. Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
    20. Alireza Rahimi & Arne Ulbrich & Joshua J. Coon & Shannon S. Stahl, 2014. "Formic-acid-induced depolymerization of oxidized lignin to aromatics," Nature, Nature, vol. 515(7526), pages 249-252, November.
    21. Theodore Dickerson & Juan Soria, 2013. "Catalytic Fast Pyrolysis: A Review," Energies, MDPI, vol. 6(1), pages 1-25, January.
    22. Hervy, Maxime & Weiss-Hortala, Elsa & Pham Minh, Doan & Dib, Hadi & Villot, Audrey & Gérente, Claire & Berhanu, Sarah & Chesnaud, Anthony & Thorel, Alain & Le Coq, Laurence & Nzihou, Ange, 2019. "Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tar," Applied Energy, Elsevier, vol. 237(C), pages 487-499.
    23. Martina Perišić & Ernest Barceló & Katarina Dimic-Misic & Monireh Imani & Vesna Spasojević Brkić, 2022. "The Role of Bioeconomy in the Future Energy Scenario: A State-of-the-Art Review," Sustainability, MDPI, vol. 14(1), pages 1-23, January.
    24. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    25. Chetna Mohabeer & Nolven Guilhaume & Dorothée Laurenti & Yves Schuurman, 2022. "Microwave-Assisted Pyrolysis of Biomass with and without Use of Catalyst in a Fluidised Bed Reactor: A Review," Energies, MDPI, vol. 15(9), pages 1-22, April.
    26. Md Sumon Reza & Juntakan Taweekun & Shammya Afroze & Shohel Ahmed Siddique & Md. Shahinoor Islam & Chongqing Wang & Abul K. Azad, 2023. "Investigation of Thermochemical Properties and Pyrolysis of Barley Waste as a Source for Renewable Energy," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    27. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    28. Williams, Paul T & Nugranad, Nittaya, 2000. "Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks," Energy, Elsevier, vol. 25(6), pages 493-513.
    29. Ly, Hoang Vu & Lim, Dong-Hyeon & Sim, Jae Wook & Kim, Seung-Soo & Kim, Jinsoo, 2018. "Catalytic pyrolysis of tulip tree (Liriodendron) in bubbling fluidized-bed reactor for upgrading bio-oil using dolomite catalyst," Energy, Elsevier, vol. 162(C), pages 564-575.
    30. Kung, Chih-Chun & Zhang, Ning, 2015. "Renewable energy from pyrolysis using crops and agricultural residuals: An economic and environmental evaluation," Energy, Elsevier, vol. 90(P2), pages 1532-1544.
    31. Mohsin Raza & Abrar Inayat & Ashfaq Ahmed & Farrukh Jamil & Chaouki Ghenai & Salman R. Naqvi & Abdallah Shanableh & Muhammad Ayoub & Ammara Waris & Young-Kwon Park, 2021. "Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing," Sustainability, MDPI, vol. 13(19), pages 1-42, October.
    32. Motasem Y. D. Alazaiza & Ahmed Albahnasawi & Tahra Al Maskari & Mohammed Shadi S. Abujazar & Mohammed J. K. Bashir & Dia Eddin Nassani & Salem S. Abu Amr, 2023. "Biofuel Production Using Cultivated Algae: Technologies, Economics, and Its Environmental Impacts," Energies, MDPI, vol. 16(3), pages 1-27, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Rumaihi, Aisha & Shahbaz, Muhammad & Mckay, Gordon & Mackey, Hamish & Al-Ansari, Tareq, 2022. "A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    3. Mika Pahnila & Aki Koskela & Petri Sulasalmi & Timo Fabritius, 2023. "A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties," Energies, MDPI, vol. 16(19), pages 1-27, October.
    4. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    5. Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Roy, Poritosh & Dias, Goretty, 2017. "Prospects for pyrolysis technologies in the bioenergy sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 59-69.
    7. Kumar N, Sasi & Grekov, Denys & Pré, Pascaline & Alappat, Babu J., 2020. "Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    8. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Alexandre Tisserant & Francesco Cherubini, 2019. "Potentials, Limitations, Co-Benefits, and Trade-Offs of Biochar Applications to Soils for Climate Change Mitigation," Land, MDPI, vol. 8(12), pages 1-34, November.
    10. Su, Guangcan & Mohd Zulkifli, Nurin Wahidah & Ong, Hwai Chyuan & Ibrahim, Shaliza & Bu, Quan & Zhu, Ruonan, 2022. "Pyrolysis of oil palm wastes for bioenergy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    11. Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
    12. Md Sumon Reza & Shammya Afroze & Kairat Kuterbekov & Asset Kabyshev & Kenzhebatyr Zh. Bekmyrza & Md Naimul Haque & Shafi Noor Islam & Md Aslam Hossain & Mahbub Hassan & Hridoy Roy & Md Shahinoor Islam, 2023. "Advanced Applications of Carbonaceous Materials in Sustainable Water Treatment, Energy Storage, and CO 2 Capture: A Comprehensive Review," Sustainability, MDPI, vol. 15(11), pages 1-56, May.
    13. Ascher, Simon & Watson, Ian & You, Siming, 2022. "Machine learning methods for modelling the gasification and pyrolysis of biomass and waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    14. Javier Fermoso & Patricia Pizarro & Juan M. Coronado & David P. Serrano, 2017. "Advanced biofuels production by upgrading of pyrolysis bio‐oil," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(4), July.
    15. Kung, Chih-Chun & Mu, Jianhong E., 2019. "Prospect of China's renewable energy development from pyrolysis and biochar applications under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    16. Shi, Ziyi & Jin, Yanghao & Svanberg, Rikard & Han, Tong & Minidis, Alexander B.E. & Ann-Sofi, Kindstedt Danielsson & Kjeldsen, Christian & Jönsson, Pär G. & Yang, Weihong, 2023. "Continuous catalytic pyrolysis of biomass using a fluidized bed with commercial-ready catalysts for scale-up," Energy, Elsevier, vol. 273(C).
    17. Md Sumon Reza & Shammya Afroze & Kairat Kuterbekov & Asset Kabyshev & Kenzhebatyr Zh. Bekmyrza & Juntakan Taweekun & Fairuzeta Ja’afar & Muhammad Saifullah Abu Bakar & Abul K. Azad & Hridoy Roy & Md. , 2023. "Ex Situ Catalytic Pyrolysis of Invasive Pennisetum purpureum Grass with Activated Carbon for Upgrading Bio-Oil," Sustainability, MDPI, vol. 15(9), pages 1-20, May.
    18. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Gupta, Shubhi & Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis," Energy, Elsevier, vol. 181(C), pages 665-676.
    20. Pang, Yunji & Wu, Yuting & Chen, Yisheng & Luo, Fuliang & Chen, Junjun, 2020. "Degradation effect of Ce/Al2O3 catalyst on pyrolysis volatility of pine," Renewable Energy, Elsevier, vol. 162(C), pages 134-143.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5547-:d:1200020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.