IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v162y2018icp564-575.html
   My bibliography  Save this article

Catalytic pyrolysis of tulip tree (Liriodendron) in bubbling fluidized-bed reactor for upgrading bio-oil using dolomite catalyst

Author

Listed:
  • Ly, Hoang Vu
  • Lim, Dong-Hyeon
  • Sim, Jae Wook
  • Kim, Seung-Soo
  • Kim, Jinsoo

Abstract

Fractional catalytic pyrolysis is an updated pyrolysis method, in which the biomass can be converted into higher quality bio-oil by upgrading the pyrolysis vapor in fluidized bed. In this study, the fast pyrolysis of tulip tree (Liriodendron) was performed in a bubbling fluidized-bed reactor under various reaction conditions (pyrolysis temperature, flow rate of fluidizing medium, and biomass particle size) to investigate the effects of these parameters on product yield and bio-oil quality. The system used silica sand and dolomite as the fluidizing bed material, and nitrogen as the fluidizing medium. When the pyrolysis temperature increased from 400 °C to 550 °C, the bio-oil yield was between 40.07 wt% and 49.03 wt% compared to those of 28.38 and 44.83 wt% using dolomite catalyst. Deoxygenation of bio-oil mostly produced water, and produced lower amounts of CO and CO2, but higher amounts of H2 and hydrocarbons gas. The catalytic process obtaineda high ratio of H2/CO in the gas product.

Suggested Citation

  • Ly, Hoang Vu & Lim, Dong-Hyeon & Sim, Jae Wook & Kim, Seung-Soo & Kim, Jinsoo, 2018. "Catalytic pyrolysis of tulip tree (Liriodendron) in bubbling fluidized-bed reactor for upgrading bio-oil using dolomite catalyst," Energy, Elsevier, vol. 162(C), pages 564-575.
  • Handle: RePEc:eee:energy:v:162:y:2018:i:c:p:564-575
    DOI: 10.1016/j.energy.2018.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218315093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Mian & Laghari, Mahmood & Cui, Baihui & Xiao, Bo & Zhang, Beiping & Guo, Dabin, 2018. "Catalytic cracking of biomass tar over char supported nickel catalyst," Energy, Elsevier, vol. 145(C), pages 228-237.
    2. Berrueco, C. & Montané, D. & Matas Güell, B. & del Alamo, G., 2014. "Effect of temperature and dolomite on tar formation during gasification of torrefied biomass in a pressurized fluidized bed," Energy, Elsevier, vol. 66(C), pages 849-859.
    3. Jahromi, Hossein & Agblevor, Foster A., 2017. "Upgrading of pinyon-juniper catalytic pyrolysis oil via hydrodeoxygenation," Energy, Elsevier, vol. 141(C), pages 2186-2195.
    4. Ly, Hoang Vu & Kim, Seung-Soo & Woo, Hee Chul & Choi, Jae Hyung & Suh, Dong Jin & Kim, Jinsoo, 2015. "Fast pyrolysis of macroalga Saccharina japonica in a bubbling fluidized-bed reactor for bio-oil production," Energy, Elsevier, vol. 93(P2), pages 1436-1446.
    5. Kim, Tae-Seung & Oh, Shinyoung & Kim, Jae-Young & Choi, In-Gyu & Choi, Joon Weon, 2014. "Study on the hydrodeoxygenative upgrading of crude bio-oil produced from woody biomass by fast pyrolysis," Energy, Elsevier, vol. 68(C), pages 437-443.
    6. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    7. Chen, Guan-Bang & Li, Yueh-Heng & Chen, Guan-Lin & Wu, Wen-Teng, 2017. "Effects of catalysts on pyrolysis of castor meal," Energy, Elsevier, vol. 119(C), pages 1-9.
    8. Ly, Hoang Vu & Kim, Jinsoo & Kim, Seung-Soo, 2013. "Pyrolysis characteristics and kinetics of palm fiber in a closed reactor," Renewable Energy, Elsevier, vol. 54(C), pages 91-95.
    9. Choi, Hang Seok & Choi, Yeon Seok & Park, Hoon Chae, 2012. "Fast pyrolysis characteristics of lignocellulosic biomass with varying reaction conditions," Renewable Energy, Elsevier, vol. 42(C), pages 131-135.
    10. Hwang, Jae Gyu & Park, Hoon Chae & Choi, Joon Weon & Oh, Shin Young & Moon, Youn Ho & Choi, Hang Seok, 2016. "Fast pyrolysis of the energy crop “Geodae-Uksae 1” in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 95(C), pages 1-11.
    11. Huang, Yu-Fong & Kuan, Wen-Hui & Chang, Chun-Yuan, 2018. "Effects of particle size, pretreatment, and catalysis on microwave pyrolysis of corn stover," Energy, Elsevier, vol. 143(C), pages 696-703.
    12. Cai, Wenfei & Dai, Li & Liu, Ronghou, 2018. "Catalytic fast pyrolysis of rice husk for bio-oil production," Energy, Elsevier, vol. 154(C), pages 477-487.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Ziyi & Jin, Yanghao & Svanberg, Rikard & Han, Tong & Minidis, Alexander B.E. & Ann-Sofi, Kindstedt Danielsson & Kjeldsen, Christian & Jönsson, Pär G. & Yang, Weihong, 2023. "Continuous catalytic pyrolysis of biomass using a fluidized bed with commercial-ready catalysts for scale-up," Energy, Elsevier, vol. 273(C).
    2. Leng, Erwei & He, Ben & Chen, Jingwei & Liao, Gaoliang & Ma, Yinjie & Zhang, Feng & Liu, Shuai & E, Jiaqiang, 2021. "Prediction of three-phase product distribution and bio-oil heating value of biomass fast pyrolysis based on machine learning," Energy, Elsevier, vol. 236(C).
    3. Choi, Jae Hyung & Kim, Seung-Soo & Kim, Jinsoo & Woo, Hee Chul, 2019. "Fast pyrolysis of fermentation residue derived from Saccharina japonica for a hybrid biological and thermal process," Energy, Elsevier, vol. 170(C), pages 239-249.
    4. Ly, Hoang Vu & Park, Jeong Woo & Kim, Seung-Soo & Hwang, Hyun Tae & Kim, Jinsoo & Woo, Hee Chul, 2020. "Catalytic pyrolysis of bamboo in a bubbling fluidized-bed reactor with two different catalysts: HZSM-5 and red mud for upgrading bio-oil," Renewable Energy, Elsevier, vol. 149(C), pages 1434-1445.
    5. Zhang, Yuchun & Yi, Weiming & Fu, Peng & Li, Zhihe & Bai, Xueyuan & Tian, Chunyan & Wang, Nana & Li, Yongjun, 2019. "Flow and reaction characteristics on catalytic upgrading of biomass pyrolysis vapors in novel cyclone reactors," Energy, Elsevier, vol. 189(C).
    6. Harsha Mysore Prabhakara & Eddy A. Bramer & Gerrit Brem, 2021. "Biomass Fast Pyrolysis Vapor Upgrading over γ-Alumina, Hydrotalcite, Dolomite and Effect of Na 2 CO 3 Loading: A Pyro Probe GCMS Study," Energies, MDPI, vol. 14(17), pages 1-17, August.
    7. Md Sumon Reza & Zhanar Baktybaevna Iskakova & Shammya Afroze & Kairat Kuterbekov & Asset Kabyshev & Kenzhebatyr Zh. Bekmyrza & Marzhan M. Kubenova & Muhammad Saifullah Abu Bakar & Abul K. Azad & Hrido, 2023. "Influence of Catalyst on the Yield and Quality of Bio-Oil for the Catalytic Pyrolysis of Biomass: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-39, July.
    8. Park, Jeong-Woo & Heo, Juheon & Ly, Hoang Vu & Kim, Jinsoo & Lim, Hankwon & Kim, Seung-Soo, 2019. "Fast pyrolysis of acid-washed oil palm empty fruit bunch for bio-oil production in a bubbling fluidized-bed reactor," Energy, Elsevier, vol. 179(C), pages 517-527.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Ochoa, Aitor & Vicente, Héctor & Sierra, Irene & Arandes, José M. & Castaño, Pedro, 2020. "Implications of feeding or cofeeding bio-oil in the fluid catalytic cracker (FCC) in terms of regeneration kinetics and energy balance," Energy, Elsevier, vol. 209(C).
    3. Gao, Ningbo & Salisu, Jamilu & Quan, Cui & Williams, Paul, 2021. "Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Li, Zhixia & Huang, Zhentao & Ding, Shilei & Li, Fuwei & Wang, Zhaohe & Lin, Hongfei & Chen, Congjin, 2018. "Catalytic conversion of waste cooking oil to fuel oil: Catalyst design and effect of solvent," Energy, Elsevier, vol. 157(C), pages 270-277.
    5. Ly, Hoang Vu & Park, Jeong Woo & Kim, Seung-Soo & Hwang, Hyun Tae & Kim, Jinsoo & Woo, Hee Chul, 2020. "Catalytic pyrolysis of bamboo in a bubbling fluidized-bed reactor with two different catalysts: HZSM-5 and red mud for upgrading bio-oil," Renewable Energy, Elsevier, vol. 149(C), pages 1434-1445.
    6. Ming, Zi-Qiang & Liu, Yun-Quan & Ye, Yue-Yuan & Li, Shui-Rong & Zhao, Ying-Ru & Wang, Duo, 2016. "Study of a new combined method for pre-extraction of essential oils and catalytic fast pyrolysis of pine sawdust," Energy, Elsevier, vol. 116(P1), pages 558-566.
    7. Su, Guangcan & Mohd Zulkifli, Nurin Wahidah & Ong, Hwai Chyuan & Ibrahim, Shaliza & Bu, Quan & Zhu, Ruonan, 2022. "Pyrolysis of oil palm wastes for bioenergy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    8. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    9. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Gupta, Shubhi & Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis," Energy, Elsevier, vol. 181(C), pages 665-676.
    11. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    12. Bouraoui, Zeineb & Jeguirim, Mejdi & Guizani, Chamseddine & Limousy, Lionel & Dupont, Capucine & Gadiou, Roger, 2015. "Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity," Energy, Elsevier, vol. 88(C), pages 703-710.
    13. Pang, Yunji & Wu, Yuting & Chen, Yisheng & Luo, Fuliang & Chen, Junjun, 2020. "Degradation effect of Ce/Al2O3 catalyst on pyrolysis volatility of pine," Renewable Energy, Elsevier, vol. 162(C), pages 134-143.
    14. Wan Mahari, Wan Adibah & Chong, Cheng Tung & Cheng, Chin Kui & Lee, Chern Leing & Hendrata, Kristian & Yuh Yek, Peter Nai & Ma, Nyuk Ling & Lam, Su Shiung, 2018. "Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste," Energy, Elsevier, vol. 162(C), pages 309-317.
    15. Xing, Jiangkuan & Wang, Haiou & Luo, Kun & Wang, Shuai & Bai, Yun & Fan, Jianren, 2019. "Predictive single-step kinetic model of biomass devolatilization for CFD applications: A comparison study of empirical correlations (EC), artificial neural networks (ANN) and random forest (RF)," Renewable Energy, Elsevier, vol. 136(C), pages 104-114.
    16. Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
    17. Guan, Guoqing & Kaewpanha, Malinee & Hao, Xiaogang & Abudula, Abuliti, 2016. "Catalytic steam reforming of biomass tar: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 450-461.
    18. Li, Jian & Tao, Junyu & Yan, Beibei & Cheng, Kexin & Chen, Guanyi & Hu, Jianli, 2020. "Microwave reforming with char-supported Nickel-Cerium catalysts: A potential approach for thorough conversion of biomass tar model compound," Applied Energy, Elsevier, vol. 261(C).
    19. Lee, Hyung Won & Jun, Bo Ram & Kim, Hannah & Kim, Do Heui & Jeon, Jong-Ki & Park, Sung Hoon & Ko, Chang Hyun & Kim, Tae-Wan & Park, Young-Kwon, 2015. "Catalytic hydrodeoxygenation of 2-methoxy phenol and dibenzofuran over Pt/mesoporous zeolites," Energy, Elsevier, vol. 81(C), pages 33-40.
    20. Yang, Xiaoxia & Gu, Shengshen & Kheradmand, Amanj & Kan, Tao & He, Jing & Strezov, Vladimir & Zou, Ruiping & Yu, Aibing & Jiang, Yijiao, 2022. "Tunable syngas production from biomass: Synergistic effect of steam, Ni–CaO catalyst, and biochar," Energy, Elsevier, vol. 254(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:162:y:2018:i:c:p:564-575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.