IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v119y2017icp1-9.html
   My bibliography  Save this article

Effects of catalysts on pyrolysis of castor meal

Author

Listed:
  • Chen, Guan-Bang
  • Li, Yueh-Heng
  • Chen, Guan-Lin
  • Wu, Wen-Teng

Abstract

In this study, γ-alumina and zeolite ZSM-5 were used as catalysts to examine their effects on the pyrolysis of castor meal. The operation conditions for the pyrolysis were a pyrolytic temperature of 400 °C, residence time of 120 min, heating rate of 20 °C/min, and nitrogen flow rate of 200 mL/min. With the addition of catalysts, significant variations in pyrolytic products was observed, and the presence of γ-alumina and zeolite ZSM-5 slightly reduced the pyrolytic oil yield. However, the thermal analysis results demonstrate that the catalysts changed the pyrolysis mode and enhanced the hydrogenation/deoxygenation reaction and removed oxygen as CO, CO2, and H2O. Gas chromatography-mass spectrometry, elemental analysis, and viscosity analysis were also performed. With the addition of catalysts, the pyrolytic oil consisted of lighter compounds. The viscosity of the pyrolytic oil decreased significantly, and its viscosity index and calorific value increased. Therefore, catalytic pyrolysis can improve the quality of pyrolytic oil, and adding γ-alumina decreases the pyrolysis temperature from 339 °C to 284 °C. In addition, for the deoxygenating ability, the effect of γ-alumina will be greater than that of zeolite ZSM-5.

Suggested Citation

  • Chen, Guan-Bang & Li, Yueh-Heng & Chen, Guan-Lin & Wu, Wen-Teng, 2017. "Effects of catalysts on pyrolysis of castor meal," Energy, Elsevier, vol. 119(C), pages 1-9.
  • Handle: RePEc:eee:energy:v:119:y:2017:i:c:p:1-9
    DOI: 10.1016/j.energy.2016.12.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421631876X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.12.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Guan-Bang & Li, Yueh-Heng & Cheng, Tsarng-Sheng & Chao, Yei-Chin, 2013. "Chemical effect of hydrogen peroxide addition on characteristics of methane–air combustion," Energy, Elsevier, vol. 55(C), pages 564-570.
    2. Nurul Islam, Mohammad & Nurul Islam, Mohammad & Rafiqul Alam Beg, Mohammad & Rofiqul Islam, Mohammad, 2005. "Pyrolytic oil from fixed bed pyrolysis of municipal solid waste and its characterization," Renewable Energy, Elsevier, vol. 30(3), pages 413-420.
    3. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    4. Yang, S.I. & Wu, M.S. & Wu, C.Y., 2014. "Application of biomass fast pyrolysis part I: Pyrolysis characteristics and products," Energy, Elsevier, vol. 66(C), pages 162-171.
    5. Yang, S.I. & Hsu, T.C. & Wu, C.Y. & Chen, K.H. & Hsu, Y.L. & Li, Y.H., 2014. "Application of biomass fast pyrolysis part II: The effects that bio-pyrolysis oil has on the performance of diesel engines," Energy, Elsevier, vol. 66(C), pages 172-180.
    6. Ahmed, I.I. & Gupta, A.K., 2010. "Pyrolysis and gasification of food waste: Syngas characteristics and char gasification kinetics," Applied Energy, Elsevier, vol. 87(1), pages 101-108, January.
    7. Chen, Guan-Lin & Chen, Guan-Bang & Li, Yueh-Heng & Wu, Wen-Teng, 2014. "A study of thermal pyrolysis for castor meal using the Taguchi method," Energy, Elsevier, vol. 71(C), pages 62-70.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ly, Hoang Vu & Lim, Dong-Hyeon & Sim, Jae Wook & Kim, Seung-Soo & Kim, Jinsoo, 2018. "Catalytic pyrolysis of tulip tree (Liriodendron) in bubbling fluidized-bed reactor for upgrading bio-oil using dolomite catalyst," Energy, Elsevier, vol. 162(C), pages 564-575.
    2. Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Chen, Wei-Hsin & Farooq, Wasif & Shahbaz, Muhammad & Naqvi, Salman Raza & Ali, Imtiaz & Al-Ansari, Tareq & Saidina Amin, Nor Aishah, 2021. "Current status of biohydrogen production from lignocellulosic biomass, technical challenges and commercial potential through pyrolysis process," Energy, Elsevier, vol. 226(C).
    4. Chintala, Venkateswarlu, 2018. "Production, upgradation and utilization of solar assisted pyrolysis fuels from biomass – A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 120-130.
    5. Vikas Sharma & Abul Kalam Hossain & Ganesh Duraisamy & Murugan Vijay, 2021. "Transesterification of Pyrolysed Castor Seed Oil in the Presence of CaCu(OCH 3 ) 2 Catalyst," Energies, MDPI, vol. 14(19), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guan-Bang Chen & Jia-Wen Li & Hsien-Tsung Lin & Fang-Hsien Wu & Yei-Chin Chao, 2018. "A Study of the Production and Combustion Characteristics of Pyrolytic Oil from Sewage Sludge Using the Taguchi Method," Energies, MDPI, vol. 11(9), pages 1-17, August.
    2. Lin, Bo-Jhih & Chen, Wei-Hsin & Hsieh, Tzu-Hsien & Ong, Hwai Chyuan & Show, Pau Loke & Naqvi, Salman Raza, 2019. "Oxidative reaction interaction and synergistic index of emulsified pyrolysis bio-oil/diesel fuels," Renewable Energy, Elsevier, vol. 136(C), pages 223-234.
    3. Yang, S.I. & Wu, M.S., 2017. "The droplet combustion and thermal characteristics of pinewood bio-oil from slow pyrolysis," Energy, Elsevier, vol. 141(C), pages 2377-2386.
    4. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    5. Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Sellin, Noeli & Krohl, Diego Ricardo & Marangoni, Cintia & Souza, Ozair, 2016. "Oxidative fast pyrolysis of banana leaves in fluidized bed reactor," Renewable Energy, Elsevier, vol. 96(PA), pages 56-64.
    7. Chen, Wen-Lih & Sirisha, Vadlakonda & Yu, Chi-Yuan & Wang, Yan-Ru & Dai, Ming-Wei & Lasek, Janusz & Li, Yueh-Heng, 2024. "Design and optimization of a combined heat and power system with a fluidized-bed combustor and stirling engine," Energy, Elsevier, vol. 293(C).
    8. Yang, S.I. & Wu, M.S. & Hsu, T.C., 2017. "Experimental and numerical simulation study of oxycombustion of fast pyrolysis bio-oil from lignocellulosic biomass," Energy, Elsevier, vol. 126(C), pages 854-867.
    9. Li, Yueh-Heng & Lin, Hsien-Tsung & Xiao, Kai-Lin & Lasek, Janusz, 2018. "Combustion behavior of coal pellets blended with Miscanthus biochar," Energy, Elsevier, vol. 163(C), pages 180-190.
    10. Ming, Zi-Qiang & Liu, Yun-Quan & Ye, Yue-Yuan & Li, Shui-Rong & Zhao, Ying-Ru & Wang, Duo, 2016. "Study of a new combined method for pre-extraction of essential oils and catalytic fast pyrolysis of pine sawdust," Energy, Elsevier, vol. 116(P1), pages 558-566.
    11. Wu, M.S. & Yang, S.I., 2016. "Combustion characteristics of multi-component cedar bio-oil/kerosene droplet," Energy, Elsevier, vol. 113(C), pages 788-795.
    12. Lin, Bo-Jhih & Chen, Wei-Hsin & Budzianowski, Wojciech M. & Hsieh, Cheng-Ting & Lin, Pei-Hsun, 2016. "Emulsification analysis of bio-oil and diesel under various combinations of emulsifiers," Applied Energy, Elsevier, vol. 178(C), pages 746-757.
    13. Wu, Chih-Yung & Yang, Shou Yin & Hsu, Tien-Chiu & Chen, Kun-Ho, 2016. "Self-ignition and reaction promotion of H2 with CO2/O2 in Pt-Coated γ-Al2O3 bead reactor," Energy, Elsevier, vol. 94(C), pages 524-532.
    14. Huang, Chao-Wei & Li, Yueh-Heng & Xiao, Kai-Lin & Lasek, Janusz, 2019. "Cofiring characteristics of coal blended with torrefied Miscanthus biochar optimized with three Taguchi indexes," Energy, Elsevier, vol. 172(C), pages 566-579.
    15. Yang, S.I. & Wu, M.S. & Hsu, T.C., 2017. "Spray combustion characteristics of kerosene/bio-oil part I: Experimental study," Energy, Elsevier, vol. 119(C), pages 26-36.
    16. Yang, S.I. & Hsu, T.C. & Wu, M.S., 2016. "Spray combustion characteristics of kerosene/bio-oil part II: Numerical study," Energy, Elsevier, vol. 115(P1), pages 458-467.
    17. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    18. Cai, Peng & Liu, Zhenyi & Li, Pengliang & Zhao, Yao & Li, Mingzhi & Li, Ranran & Wang, Chen & Xiu, Zihao, 2023. "Effects of fuel component, airflow field and obstacles on explosion characteristics of hydrogen/methane mixtures fuel," Energy, Elsevier, vol. 265(C).
    19. Yang, S.I. & Hsu, T.C. & Wu, C.Y. & Chen, K.H. & Hsu, Y.L. & Li, Y.H., 2014. "Application of biomass fast pyrolysis part II: The effects that bio-pyrolysis oil has on the performance of diesel engines," Energy, Elsevier, vol. 66(C), pages 172-180.
    20. Nzihou, Ange & Stanmore, Brian & Sharrock, Patrick, 2013. "A review of catalysts for the gasification of biomass char, with some reference to coal," Energy, Elsevier, vol. 58(C), pages 305-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:119:y:2017:i:c:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.