IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v172y2019icp566-579.html
   My bibliography  Save this article

Cofiring characteristics of coal blended with torrefied Miscanthus biochar optimized with three Taguchi indexes

Author

Listed:
  • Huang, Chao-Wei
  • Li, Yueh-Heng
  • Xiao, Kai-Lin
  • Lasek, Janusz

Abstract

The main purpose of this study was the optimization of torrefaction conditions for biochar cofiring with new Taguchi indicators. However, the combustion characteristics of biochar cofiring in different furnaces and reactors are distinct. Examining optimal torrefaction conditions using the Taguchi method based on maximum energy or mass yields is paradoxical. Accordingly, three indicators, that is S index, proximate-based index (PA index), and elemental-based index (EB index), were proposed for solid fuel combustion. To study the combustion behavior of biochar torrefied under optimal conditions, a single pellet combustor was employed to record the characteristic time and gas emission at various reaction regions. Furthermore, the effects of ambient temperature and biomass blending ratio (BBR) on combustion behavior were investigated in the single pellet combustion experiment.

Suggested Citation

  • Huang, Chao-Wei & Li, Yueh-Heng & Xiao, Kai-Lin & Lasek, Janusz, 2019. "Cofiring characteristics of coal blended with torrefied Miscanthus biochar optimized with three Taguchi indexes," Energy, Elsevier, vol. 172(C), pages 566-579.
  • Handle: RePEc:eee:energy:v:172:y:2019:i:c:p:566-579
    DOI: 10.1016/j.energy.2019.01.168
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219301884
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.01.168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    2. Wilk, Małgorzata & Magdziarz, Aneta & Kalemba, Izabela, 2015. "Characterisation of renewable fuels' torrefaction process with different instrumental techniques," Energy, Elsevier, vol. 87(C), pages 259-269.
    3. Li, Yueh-Heng & Chen, Guan-Bang & Lin, Yi-Chieh & Chao, Yei-Chin, 2015. "Effects of flue gas recirculation on the premixed oxy-methane flames in atmospheric condition," Energy, Elsevier, vol. 89(C), pages 845-857.
    4. Chen, Wei-Hsin & Kuo, Po-Chih, 2010. "A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry," Energy, Elsevier, vol. 35(6), pages 2580-2586.
    5. Li, Yueh-Heng & Lin, Hsien-Tsung & Xiao, Kai-Lin & Lasek, Janusz, 2018. "Combustion behavior of coal pellets blended with Miscanthus biochar," Energy, Elsevier, vol. 163(C), pages 180-190.
    6. Kopczyński, Marcin & Lasek, Janusz A. & Iluk, Andrzej & Zuwała, Jarosław, 2017. "The co-combustion of hard coal with raw and torrefied biomasses (willow (Salix viminalis), olive oil residue and waste wood from furniture manufacturing)," Energy, Elsevier, vol. 140(P1), pages 1316-1325.
    7. Li, Yueh-Heng & Chen, Guan-Bang & Wu, Fang-Hsien & Hsieh, Hsiu-Feng & Chao, Yei-Chin, 2016. "Effects of carbon dioxide in oxy-fuel atmosphere on catalytic combustion in a small-scale channel," Energy, Elsevier, vol. 94(C), pages 766-774.
    8. Wilk, Małgorzata & Magdziarz, Aneta, 2017. "Hydrothermal carbonization, torrefaction and slow pyrolysis of Miscanthus giganteus," Energy, Elsevier, vol. 140(P1), pages 1292-1304.
    9. Lu, Jau-Jang & Chen, Wei-Hsin, 2015. "Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis," Applied Energy, Elsevier, vol. 160(C), pages 49-57.
    10. Yang, S.I. & Wu, M.S. & Wu, C.Y., 2014. "Application of biomass fast pyrolysis part I: Pyrolysis characteristics and products," Energy, Elsevier, vol. 66(C), pages 162-171.
    11. Chen, Guan-Lin & Chen, Guan-Bang & Li, Yueh-Heng & Wu, Wen-Teng, 2014. "A study of thermal pyrolysis for castor meal using the Taguchi method," Energy, Elsevier, vol. 71(C), pages 62-70.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yuzhuo & Wu, Jun Jie, 2023. "Thermochemical conversion of biomass: Potential future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    2. Von Cossel, M. & Lebendig, F. & Müller, M. & Hieber, C. & Iqbal, Y. & Cohnen, J. & Jablonowski, N.D., 2022. "Improving combustion quality of Miscanthus by adding biomass from perennial flower-rich wild plant species," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Tae-Yong Jeong & Lkhagvadorj Sh & Jong-Ho Kim & Byoung-Hwa Lee & Chung-Hwan Jeon, 2019. "Experimental Investigation of Ash Deposit Behavior during Co-Combustion of Bituminous Coal with Wood Pellets and Empty Fruit Bunches," Energies, MDPI, vol. 12(11), pages 1-17, May.
    4. Fakudze, Sandile & Zhang, Yu & Wei, Yingyuan & Li, Yueh-Heng & Chen, Jianqiang & Wang, Jiaxin & Han, Jiangang, 2023. "Taguchi-optimized oxy-combustion of hydrochar/coal blends for CO2 capture and maximized combustion performance," Energy, Elsevier, vol. 267(C).
    5. Wander, Paulo R. & Bianchi, Flávio M. & Caetano, Nattan R. & Klunk, Marcos A. & Indrusiak, Maria Luiza S., 2020. "Cofiring low-rank coal and biomass in a bubbling fluidized bed with varying excess air ratio and fluidization velocity," Energy, Elsevier, vol. 203(C).
    6. Riva, Lorenzo & Wang, Liang & Ravenni, Giulia & Bartocci, Pietro & Buø, Therese Videm & Skreiberg, Øyvind & Fantozzi, Francesco & Nielsen, Henrik Kofoed, 2021. "Considerations on factors affecting biochar densification behavior based on a multiparameter model," Energy, Elsevier, vol. 221(C).
    7. Fakudze, Sandile & Wei, Yingyuan & Shang, Qianqian & Ma, Ru & Li, Yueh-Heng & Chen, Jianqiang & Zhou, Peiguo & Han, Jiangang & Liu, Chengguo, 2021. "Single-pot upgrading of run-of-mine coal and rice straw via Taguchi-optimized hydrothermal treatment: Fuel properties and synergistic effects," Energy, Elsevier, vol. 236(C).
    8. Niu, Yanqing & Lv, Yuan & Lei, Yu & Liu, Siqi & Liang, Yang & Wang, Denghui & Hui, Shi'en, 2019. "Biomass torrefaction: properties, applications, challenges, and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    9. Chen, Wen-Lih & Currao, Gaetano & Li, Yueh-Heng & Kao, Chien-Chun, 2023. "Employing Taguchi method to optimize the performance of a microscale combined heat and power system with Stirling engine and thermophotovoltaic array," Energy, Elsevier, vol. 270(C).
    10. Wei, Yingyuan & Fakudze, Sandile & Zhang, Yiming & Ma, Ru & Shang, Qianqian & Chen, Jianqiang & Liu, Chengguo & Chu, Qiulu, 2022. "Co-hydrothermal carbonization of pomelo peel and PVC for production of hydrochar pellets with enhanced fuel properties and dechlorination," Energy, Elsevier, vol. 239(PD).
    11. Joanna Wnorowska & Szymon Ciukaj & Sylwester Kalisz, 2021. "Thermogravimetric Analysis of Solid Biofuels with Additive under Air Atmosphere," Energies, MDPI, vol. 14(8), pages 1-19, April.
    12. Katerina Klemencova & Barbora Grycova & Pavel Lestinsky, 2022. "Influence of Miscanthus Rhizome Pyrolysis Operating Conditions on Products Properties," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    13. Mlonka-Mędrala, Agata & Dziok, Tadeusz & Magdziarz, Aneta & Nowak, Wojciech, 2021. "Composition and properties of fly ash collected from a multifuel fluidized bed boiler co-firing refuse derived fuel (RDF) and hard coal," Energy, Elsevier, vol. 234(C).
    14. Masami Ashizawa & Maromu Otaka & Hiromi Yamamoto & Atsushi Akisawa, 2022. "CO 2 Emissions and Economy of Co-Firing Carbonized Wood Pellets at Coal-Fired Power Plants: The Case of Overseas Production of Pellets and Use in Japan," Energies, MDPI, vol. 15(5), pages 1-10, February.
    15. Riaz, Sajid & Oluwoye, Ibukun & Al-Abdeli, Yasir M., 2022. "Oxidative torrefaction of densified woody biomass: Performance, combustion kinetics and thermodynamics," Renewable Energy, Elsevier, vol. 199(C), pages 908-918.
    16. Chen, Wen-Lih & Sirisha, Vadlakonda & Yu, Chi-Yuan & Wang, Yan-Ru & Dai, Ming-Wei & Lasek, Janusz & Li, Yueh-Heng, 2024. "Design and optimization of a combined heat and power system with a fluidized-bed combustor and stirling engine," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yueh-Heng & Lin, Hsien-Tsung & Xiao, Kai-Lin & Lasek, Janusz, 2018. "Combustion behavior of coal pellets blended with Miscanthus biochar," Energy, Elsevier, vol. 163(C), pages 180-190.
    2. Chen, Wen-Lih & Huang, Chao-Wei & Li, Yueh-Heng & Kao, Chien-Chun & Cong, Huynh Thanh, 2020. "Biosyngas-fueled platinum reactor applied in micro combined heat and power system with a thermophotovoltaic array and stirling engine," Energy, Elsevier, vol. 194(C).
    3. Śliz, Maciej & Wilk, Małgorzata, 2020. "A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow," Renewable Energy, Elsevier, vol. 156(C), pages 942-950.
    4. Safar, Michal & Lin, Bo-Jhih & Chen, Wei-Hsin & Langauer, David & Chang, Jo-Shu & Raclavska, H. & Pétrissans, Anélie & Rousset, Patrick & Pétrissans, Mathieu, 2019. "Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction," Applied Energy, Elsevier, vol. 235(C), pages 346-355.
    5. Abdelhafez, Ahmed & Hussain, Muzafar & Nemitallah, Medhat A. & Habib, Mohamed A. & Ali, Asif, 2021. "Effects of jet diameter and spacing in a micromixer-like burner for clean oxy-fuel combustion in gas turbines," Energy, Elsevier, vol. 228(C).
    6. Chen, Yun-Chun & Chen, Wei-Hsin & Lin, Bo-Jhih & Chang, Jo-Shu & Ong, Hwai Chyuan, 2016. "Impact of torrefaction on the composition, structure and reactivity of a microalga residue," Applied Energy, Elsevier, vol. 181(C), pages 110-119.
    7. Atimtay, Aysel & Yurdakul, Sema, 2020. "Combustion and Co-Combustion characteristics of torrefied poultry litter with lignite," Renewable Energy, Elsevier, vol. 148(C), pages 1292-1301.
    8. Granados, D.A. & Ruiz, R.A. & Vega, L.Y. & Chejne, F., 2017. "Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process," Energy, Elsevier, vol. 139(C), pages 818-827.
    9. Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. A. Silveira, Edgar & Santanna Chaves, Bruno & Macedo, Lucélia & Ghesti, Grace F. & Evaristo, Rafael B.W. & Cruz Lamas, Giulia & Luz, Sandra M. & Protásio, Thiago de Paula & Rousset, Patrick, 2023. "A hybrid optimization approach towards energy recovery from torrefied waste blends," Renewable Energy, Elsevier, vol. 212(C), pages 151-165.
    11. Lin, Bo-Jhih & Chen, Wei-Hsin & Hsieh, Tzu-Hsien & Ong, Hwai Chyuan & Show, Pau Loke & Naqvi, Salman Raza, 2019. "Oxidative reaction interaction and synergistic index of emulsified pyrolysis bio-oil/diesel fuels," Renewable Energy, Elsevier, vol. 136(C), pages 223-234.
    12. Kopczyński, Marcin & Lasek, Janusz A. & Iluk, Andrzej & Zuwała, Jarosław, 2017. "The co-combustion of hard coal with raw and torrefied biomasses (willow (Salix viminalis), olive oil residue and waste wood from furniture manufacturing)," Energy, Elsevier, vol. 140(P1), pages 1316-1325.
    13. Ivanovski, Maja & Goricanec, Darko & Krope, Jurij & Urbancl, Danijela, 2022. "Torrefaction pretreatment of lignocellulosic biomass for sustainable solid biofuel production," Energy, Elsevier, vol. 240(C).
    14. Chen, Wen-Lih & Currao, Gaetano & Li, Yueh-Heng & Kao, Chien-Chun, 2023. "Employing Taguchi method to optimize the performance of a microscale combined heat and power system with Stirling engine and thermophotovoltaic array," Energy, Elsevier, vol. 270(C).
    15. Liu, Jiazheng & Zhong, Fei & Niu, Wenjuan & Su, Jing & Gao, Ziqi & Zhang, Kai, 2019. "Effects of heating rate and gas atmosphere on the pyrolysis and combustion characteristics of different crop residues and the kinetics analysis," Energy, Elsevier, vol. 175(C), pages 320-332.
    16. Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
    17. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Experimental investigation of partially premixed methane–air and methane–oxygen flames stabilized over a perforated-plate burner," Applied Energy, Elsevier, vol. 169(C), pages 126-137.
    18. Szwaja, Stanisław & Magdziarz, Aneta & Zajemska, Monika & Poskart, Anna, 2019. "A torrefaction of Sida hermaphrodita to improve fuel properties. Advanced analysis of torrefied products," Renewable Energy, Elsevier, vol. 141(C), pages 894-902.
    19. Chen, Guan-Bang & Li, Yueh-Heng & Chen, Guan-Lin & Wu, Wen-Teng, 2017. "Effects of catalysts on pyrolysis of castor meal," Energy, Elsevier, vol. 119(C), pages 1-9.
    20. Korshunov, Alexey & Kichatov, Boris & Melnikova, Ksenia & Gubernov, Vladimir & Yakovenko, Ivan & Kiverin, Alexey & Golubkov, Alexandr, 2019. "Pyrolysis characteristics of biomass torrefied in a quiescent mineral layer," Energy, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:172:y:2019:i:c:p:566-579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.