IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v68y2014icp437-443.html
   My bibliography  Save this article

Study on the hydrodeoxygenative upgrading of crude bio-oil produced from woody biomass by fast pyrolysis

Author

Listed:
  • Kim, Tae-Seung
  • Oh, Shinyoung
  • Kim, Jae-Young
  • Choi, In-Gyu
  • Choi, Joon Weon

Abstract

Crude bio-oil produced from fast pyrolysis of yellow poplar wood was subjected to HDO (hydrodeoxygenation) for the purpose of reducing water content as well as increasing heating value. HDO was performed in an autoclave reactor at three different reaction factors: temperature (250–370 °C), reaction time (40–120 min), and Pd/C catalyst loading (0–6 wt%) under hydrogen atmosphere. After completion of HDO, gas, char, and two immiscible liquid products (light oil and heavy oil) were obtained. Liquid products were less acidic and contained less water than crude bio-oil. Water content of heavy oil was ranged between 0.4 wt% and 1.9 wt%. Heating values of heavy oil were estimated between 28.7 and 37.4 MJ/kg, which was about twice higher than that of crude bio-oil. Elemental analysis revealed that heavy oil had a lower O/C ratio (0.17–0.36) than crude bio-oil (0.71). H/C ratio of heavy oil decreased from 1.50 to 1.32 with an increase of temperature from 250 °C to 350 °C, respectively.

Suggested Citation

  • Kim, Tae-Seung & Oh, Shinyoung & Kim, Jae-Young & Choi, In-Gyu & Choi, Joon Weon, 2014. "Study on the hydrodeoxygenative upgrading of crude bio-oil produced from woody biomass by fast pyrolysis," Energy, Elsevier, vol. 68(C), pages 437-443.
  • Handle: RePEc:eee:energy:v:68:y:2014:i:c:p:437-443
    DOI: 10.1016/j.energy.2014.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214002576
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Demirbas, Ayhan, 2009. "Political, economic and environmental impacts of biofuels: A review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 108-117, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ly, Hoang Vu & Lim, Dong-Hyeon & Sim, Jae Wook & Kim, Seung-Soo & Kim, Jinsoo, 2018. "Catalytic pyrolysis of tulip tree (Liriodendron) in bubbling fluidized-bed reactor for upgrading bio-oil using dolomite catalyst," Energy, Elsevier, vol. 162(C), pages 564-575.
    2. Li, Zhixia & Huang, Zhentao & Ding, Shilei & Li, Fuwei & Wang, Zhaohe & Lin, Hongfei & Chen, Congjin, 2018. "Catalytic conversion of waste cooking oil to fuel oil: Catalyst design and effect of solvent," Energy, Elsevier, vol. 157(C), pages 270-277.
    3. Bartłomiej Igliński & Wojciech Kujawski & Urszula Kiełkowska, 2023. "Pyrolysis of Waste Biomass: Technical and Process Achievements, and Future Development—A Review," Energies, MDPI, vol. 16(4), pages 1-26, February.
    4. Ochoa, Aitor & Vicente, Héctor & Sierra, Irene & Arandes, José M. & Castaño, Pedro, 2020. "Implications of feeding or cofeeding bio-oil in the fluid catalytic cracker (FCC) in terms of regeneration kinetics and energy balance," Energy, Elsevier, vol. 209(C).
    5. Xing, Shiyou & Yuan, Haoran & Huhetaoli, & Qi, Yujie & Lv, Pengmei & Yuan, Zhenhong & Chen, Yong, 2016. "Characterization of the decomposition behaviors of catalytic pyrolysis of wood using copper and potassium over thermogravimetric and Py-GC/MS analysis," Energy, Elsevier, vol. 114(C), pages 634-646.
    6. Zhang, Zhaoxia & Bi, Peiyan & Jiang, Peiwen & Fan, Minghui & Deng, Shumei & Zhai, Qi & Li, Quanxin, 2015. "Production of gasoline fraction from bio-oil under atmospheric conditions by an integrated catalytic transformation process," Energy, Elsevier, vol. 90(P2), pages 1922-1930.
    7. Zhang, Xinghua & Chen, Lungang & Kong, Wei & Wang, Tiejun & Zhang, Qi & Long, Jinxing & Xu, Ying & Ma, Longlong, 2015. "Upgrading of bio-oil to boiler fuel by catalytic hydrotreatment and esterification in an efficient process," Energy, Elsevier, vol. 84(C), pages 83-90.
    8. Prajitno, Hermawan & Insyani, Rizki & Park, Jongkeun & Ryu, Changkook & Kim, Jaehoon, 2016. "Non-catalytic upgrading of fast pyrolysis bio-oil in supercritical ethanol and combustion behavior of the upgraded oil," Applied Energy, Elsevier, vol. 172(C), pages 12-22.
    9. Jahromi, Hossein & Agblevor, Foster A., 2017. "Upgrading of pinyon-juniper catalytic pyrolysis oil via hydrodeoxygenation," Energy, Elsevier, vol. 141(C), pages 2186-2195.
    10. Lee, Hyung Won & Jun, Bo Ram & Kim, Hannah & Kim, Do Heui & Jeon, Jong-Ki & Park, Sung Hoon & Ko, Chang Hyun & Kim, Tae-Wan & Park, Young-Kwon, 2015. "Catalytic hydrodeoxygenation of 2-methoxy phenol and dibenzofuran over Pt/mesoporous zeolites," Energy, Elsevier, vol. 81(C), pages 33-40.
    11. Gollakota, Anjani R.K. & Reddy, Madhurima & Subramanyam, Malladi D. & Kishore, Nanda, 2016. "A review on the upgradation techniques of pyrolysis oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1543-1568.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wen-Chao & Li, Xia & Zhu, Jia-Qing & Qin, Lei & Li, Bing-Zhi & Yuan, Ying-Jin, 2018. "Improving xylose utilization and ethanol production from dry dilute acid pretreated corn stover by two-step and fed-batch fermentation," Energy, Elsevier, vol. 157(C), pages 877-885.
    2. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    3. Lechón, Y. & de la Rúa, C. & Rodríguez, I. & Caldés, N., 2019. "Socioeconomic implications of biofuels deployment through an Input-Output approach. A case study in Uruguay," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 178-191.
    4. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    5. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    6. Winden, Matthew & Cruze, Nathan & Haab, Tim & Bakshi, Bhavik, 2015. "Monetized value of the environmental, health and resource externalities of soy biodiesel," Energy Economics, Elsevier, vol. 47(C), pages 18-24.
    7. Solmaz, Hamit & Ardebili, Seyed Mohammad Safieddin & Calam, Alper & Yılmaz, Emre & İpci, Duygu, 2021. "Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method," Energy, Elsevier, vol. 227(C).
    8. Phanankosi Moyo & Mahluli Moyo & Donatus Dube & Oswell Rusinga, 2013. "Biofuel Policy as a Key Driver for Sustainable Development in the Biofuel Sector: The Missing Ingredient in Zimbabwe’s Biofuel Pursuit," Modern Applied Science, Canadian Center of Science and Education, vol. 8(1), pages 1-36, February.
    9. Wang, Kai-Hua & Su, Chi-Wei & Lobonţ, Oana-Ramona & Umar, Muhammad, 2021. "Whether crude oil dependence and CO2 emissions influence military expenditure in net oil importing countries?," Energy Policy, Elsevier, vol. 153(C).
    10. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    11. Sacchelli, Sandro & De Meo, Isabella & Paletto, Alessandro, 2013. "Bioenergy production and forest multifunctionality: A trade-off analysis using multiscale GIS model in a case study in Italy," Applied Energy, Elsevier, vol. 104(C), pages 10-20.
    12. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    13. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    14. Malça, João & Coelho, António & Freire, Fausto, 2014. "Environmental life-cycle assessment of rapeseed-based biodiesel: Alternative cultivation systems and locations," Applied Energy, Elsevier, vol. 114(C), pages 837-844.
    15. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    16. Wei, Haiqiao & Feng, Dengquan & Pan, Mingzhang & Pan, JiaYing & Rao, XiaoKang & Gao, Dongzhi, 2016. "Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine," Applied Energy, Elsevier, vol. 175(C), pages 346-355.
    17. Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
    18. Cai, Hua & Hu, Xiaojun & Xu, Ming, 2013. "Impact of emerging clean vehicle system on water stress," Applied Energy, Elsevier, vol. 111(C), pages 644-651.
    19. Zhang, Quanchang & Yao, Mingfa & Zheng, Zunqing & Liu, Haifeng & Xu, Jia, 2012. "Experimental study of n-butanol addition on performance and emissions with diesel low temperature combustion," Energy, Elsevier, vol. 47(1), pages 515-521.
    20. repec:use:tkiwps:11 is not listed on IDEAS
    21. Atapour, Mehdi & Kariminia, Hamid-Reza, 2011. "Characterization and transesterification of Iranian bitter almond oil for biodiesel production," Applied Energy, Elsevier, vol. 88(7), pages 2377-2381, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:68:y:2014:i:c:p:437-443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.