IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v129y2018ipbp695-716.html
   My bibliography  Save this article

A comprehensive review on the pyrolysis of lignocellulosic biomass

Author

Listed:
  • Dhyani, Vaibhav
  • Bhaskar, Thallada

Abstract

In the pursuit of renewable sources of energy, biomass is emerging as a promising resource because of its abundance and carbon neutral nature. Pyrolysis is a prevailing technology for biomass conversion into the valuable hydrocarbon and alternative fuels. In this review, pyrolysis of lignocellulosic biomass has been addressed, focusing primarily on the ideal feedstock, technologies, reactors, and properties of the end product. Technical problems in using biofuel from pyrolysis, as transport fuel have also been discussed, along with solutions to address these challenges, and comments on the future scope of the pyrolysis process.

Suggested Citation

  • Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
  • Handle: RePEc:eee:renene:v:129:y:2018:i:pb:p:695-716
    DOI: 10.1016/j.renene.2017.04.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117303427
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.04.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dandi̇k, L. & Aksoy, H.A., 1999. "Effect of catalyst on the pyrolysis of used oil carried out in a fractionating pyrolysis reactor," Renewable Energy, Elsevier, vol. 16(1), pages 1007-1010.
    2. Horne, Patrick A. & Williams, Paul T., 1994. "Premium quality fuels and chemicals from the fluidised bed pyrolysis of biomass with zeolite catalyst upgrading," Renewable Energy, Elsevier, vol. 5(5), pages 810-812.
    3. Luo, Siyi & Yi, Chuijie & Zhou, Yangmin, 2013. "Bio-oil production by pyrolysis of biomass using hot blast furnace slag," Renewable Energy, Elsevier, vol. 50(C), pages 373-377.
    4. Park, Young-Kwon & Yoo, Myung Lang & Lee, Hyung Won & Park, Sung Hoon & Jung, Sang-Chul & Park, Sang-Sook & Kim, Sang-Chai, 2012. "Effects of operation conditions on pyrolysis characteristics of agricultural residues," Renewable Energy, Elsevier, vol. 42(C), pages 125-130.
    5. Stamatov, V. & Honnery, D. & Soria, J., 2006. "Combustion properties of slow pyrolysis bio-oil produced from indigenous Australian species," Renewable Energy, Elsevier, vol. 31(13), pages 2108-2121.
    6. Ginzburg, Ben-Zion, 1993. "Liquid fuel (oil) from halophilic algae: A renewable source of non-polluting energy," Renewable Energy, Elsevier, vol. 3(2), pages 249-252.
    7. Xiao, Ruirui & Yang, Wei, 2013. "Influence of temperature on organic structure of biomass pyrolysis products," Renewable Energy, Elsevier, vol. 50(C), pages 136-141.
    8. Lu, Min & Lv, Pengmei & Yuan, Zhenhong & Li, Huiwen, 2013. "The study of bimetallic Ni–Co/cordierite catalyst for cracking of tar from biomass pyrolysis," Renewable Energy, Elsevier, vol. 60(C), pages 522-528.
    9. Granada, Enrique & Míguez, J.L. & Febrero, Lara & Collazo, Joaquín & Eguía, Pablo, 2013. "Development of an experimental technique for oil recovery during biomass pyrolysis," Renewable Energy, Elsevier, vol. 60(C), pages 179-184.
    10. Nurul Islam, Mohammad & Nurul Islam, Mohammad & Rafiqul Alam Beg, Mohammad & Rofiqul Islam, Mohammad, 2005. "Pyrolytic oil from fixed bed pyrolysis of municipal solid waste and its characterization," Renewable Energy, Elsevier, vol. 30(3), pages 413-420.
    11. Nurul Islam, Mohammad & Zailani, Ramlan & Nasir Ani, Farid, 1999. "Pyrolytic oil from fluidised bed pyrolysis of oil palm shell and itscharacterisation," Renewable Energy, Elsevier, vol. 17(1), pages 73-84.
    12. Bridgwater, A. V. & Peacocke, G. V. C., 2000. "Fast pyrolysis processes for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(1), pages 1-73, March.
    13. Harman-Ware, Anne E. & Morgan, Tonya & Wilson, Michael & Crocker, Mark & Zhang, Jun & Liu, Kunlei & Stork, Jozsef & Debolt, Seth, 2013. "Microalgae as a renewable fuel source: Fast pyrolysis of Scenedesmus sp," Renewable Energy, Elsevier, vol. 60(C), pages 625-632.
    14. Cardoso, Claudia Andrea Lima & Machado, Maria Elisabete & Caramão, Elina Bastos, 2016. "Characterization of bio-oils obtained from pyrolysis of bocaiuva residues," Renewable Energy, Elsevier, vol. 91(C), pages 21-31.
    15. Pragya, Namita & Pandey, Krishan K., 2016. "Life cycle assessment of green diesel production from microalgae," Renewable Energy, Elsevier, vol. 86(C), pages 623-632.
    16. Araújo, Aruzza Mabel de Morais & Lima, Regineide de Oliveira & Gondim, Amanda Duarte & Diniz, Juraci & Souza, Luiz Di & Araujo, Antonio Souza de, 2017. "Thermal and catalytic pyrolysis of sunflower oil using AlMCM-41," Renewable Energy, Elsevier, vol. 101(C), pages 900-906.
    17. Zhou, Limin & Zou, Hongbin & Wang, Yun & Le, Zhanggao & Liu, Zhirong & Adesina, Adesoji A., 2017. "Effect of potassium on thermogravimetric behavior and co-pyrolytic kinetics of wood biomass and low density polyethylene," Renewable Energy, Elsevier, vol. 102(PA), pages 134-141.
    18. Van de Velden, Manon & Baeyens, Jan & Brems, Anke & Janssens, Bart & Dewil, Raf, 2010. "Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction," Renewable Energy, Elsevier, vol. 35(1), pages 232-242.
    19. Shadangi, Krushna Prasad & Mohanty, Kaustubha, 2014. "Kinetic study and thermal analysis of the pyrolysis of non-edible oilseed powders by thermogravimetric and differential scanning calorimetric analysis," Renewable Energy, Elsevier, vol. 63(C), pages 337-344.
    20. Kaewpengkrow, Prangtip & Atong, Duangduen & Sricharoenchaikul, Viboon, 2014. "Effect of Pd, Ru, Ni and ceramic supports on selective deoxygenation and hydrogenation of fast pyrolysis Jatropha residue vapors," Renewable Energy, Elsevier, vol. 65(C), pages 92-101.
    21. Fan, Jiqing & Kalnes, Tom N. & Alward, Matthew & Klinger, Jordan & Sadehvandi, Adam & Shonnard, David R., 2011. "Life cycle assessment of electricity generation using fast pyrolysis bio-oil," Renewable Energy, Elsevier, vol. 36(2), pages 632-641.
    22. Xiu, Shuangning & Shahbazi, Abolghasem, 2012. "Bio-oil production and upgrading research: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4406-4414.
    23. Marculescu, Cosmin & Ciuta, Simona, 2013. "Wine industry waste thermal processing for derived fuel properties improvement," Renewable Energy, Elsevier, vol. 57(C), pages 645-652.
    24. Jamaluddin, Muhammad 'Azim & Ismail, Khudzir & Mohd Ishak, Mohd Azlan & Ab Ghani, Zaidi & Abdullah, Mohd Fauzi & Safian, Muhammad Taqi-uddeen & Idris, Siti Shawalliah & Tahiruddin, Shawaluddin & Moham, 2013. "Microwave-assisted pyrolysis of palm kernel shell: Optimization using response surface methodology (RSM)," Renewable Energy, Elsevier, vol. 55(C), pages 357-365.
    25. Park, Young-Kwon & Yoo, Myung Lang & Heo, Hyeon Su & Lee, Hyung Won & Park, Sung Hoon & Jung, Sang-Chul & Park, Sang-Sook & Seo, Seong-Gyu, 2012. "Wild reed of Suncheon Bay: Potential bio-energy source," Renewable Energy, Elsevier, vol. 42(C), pages 168-172.
    26. Somerville, Michael & Jahanshahi, Sharif, 2015. "The effect of temperature and compression during pyrolysis on the density of charcoal made from Australian eucalypt wood," Renewable Energy, Elsevier, vol. 80(C), pages 471-478.
    27. Sellin, Noeli & Krohl, Diego Ricardo & Marangoni, Cintia & Souza, Ozair, 2016. "Oxidative fast pyrolysis of banana leaves in fluidized bed reactor," Renewable Energy, Elsevier, vol. 96(PA), pages 56-64.
    28. Krishna, Bhavya B. & Biswas, Bijoy & Ohri, Priyanka & Kumar, Jitendra & Singh, Rawel & Bhaskar, Thallada, 2016. "Pyrolysis of Cedrus deodara saw mill shavings in hydrogen and nitrogen atmosphere for the production of bio-oil," Renewable Energy, Elsevier, vol. 98(C), pages 238-244.
    29. Karaosmanoǧlu, F. & Teti̇k, E., 1999. "Fuel properties of pyrolytic oil of the straw and stalk of rape plant," Renewable Energy, Elsevier, vol. 16(1), pages 1090-1093.
    30. Naik, Satyanarayan & Goud, Vaibhav V. & Rout, Prasant K. & Jacobson, Kathlene & Dalai, Ajay K., 2010. "Characterization of Canadian biomass for alternative renewable biofuel," Renewable Energy, Elsevier, vol. 35(8), pages 1624-1631.
    31. Intergovernmental Panel on Climate Change IPCC, 2008. "Intergovernmental Panel on Climate Change: Fourth Assessment Report: Climate Change 2007: Synthesis Report," Working Papers id:1325, eSocialSciences.
    32. Yufeng, Zhang & Na, Deng & Jihong, Ling & Changzhong, Xu, 2003. "A new pyrolysis technology and equipment for treatment of municipal household garbage and hospital waste," Renewable Energy, Elsevier, vol. 28(15), pages 2383-2393.
    33. Al Arni, Saleh & Bosio, Barbara & Arato, Elisabetta, 2010. "Syngas from sugarcane pyrolysis: An experimental study for fuel cell applications," Renewable Energy, Elsevier, vol. 35(1), pages 29-35.
    34. Yan, Wang & Shuting, Zhang & Yufeng, Zhang & Hui, Xie & Na, Deng & Guanyi, Chen, 2005. "Experimental studies on low-temperature pyrolysis of municipal household garbage—temperature influence on pyrolysis product distribution," Renewable Energy, Elsevier, vol. 30(7), pages 1133-1142.
    35. Ahmed, I.I. & Gupta, A.K., 2013. "Experiments and stochastic simulations of lignite coal during pyrolysis and gasification," Applied Energy, Elsevier, vol. 102(C), pages 355-363.
    36. Garg, Rahul & Anand, Neeru & Kumar, Dinesh, 2016. "Pyrolysis of babool seeds (Acacia nilotica) in a fixed bed reactor and bio-oil characterization," Renewable Energy, Elsevier, vol. 96(PA), pages 167-171.
    37. Liang, Yue-gan & Cheng, Beijiu & Si, You-bin & Cao, De-ju & Jiang, Hai-yang & Han, Guo-min & Liu, Xiao-hong, 2014. "Thermal decomposition kinetics and characteristics of Spartina alterniflora via thermogravimetric analysis," Renewable Energy, Elsevier, vol. 68(C), pages 111-117.
    38. Bok, Jin Pil & Choi, Yeon Seok & Choi, Sang Kyu & Jeong, Yeon Woo, 2014. "Fast pyrolysis of Douglas fir by using tilted-slide reactor and characteristics of biocrude-oil fractions," Renewable Energy, Elsevier, vol. 65(C), pages 7-13.
    39. Lerkkasemsan, Nuttapol & Achenie, Luke E.K., 2014. "Pyrolysis of biomass – fuzzy modeling," Renewable Energy, Elsevier, vol. 66(C), pages 747-758.
    40. Do, Truong Xuan & Lim, Young-il, 2016. "Techno-economic comparison of three energy conversion pathways from empty fruit bunches," Renewable Energy, Elsevier, vol. 90(C), pages 307-318.
    41. Bordoloi, Neonjyoti & Narzari, Rumi & Sut, Debashis & Saikia, Ruprekha & Chutia, Rahul Singh & Kataki, Rupam, 2016. "Characterization of bio-oil and its sub-fractions from pyrolysis of Scenedesmus dimorphus," Renewable Energy, Elsevier, vol. 98(C), pages 245-253.
    42. Beis, S.H. & Onay, Ö. & Koçkar, Ö.M., 2002. "Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions," Renewable Energy, Elsevier, vol. 26(1), pages 21-32.
    43. Singh, Rawel & Krishna, Bhavya B. & Mishra, Garima & Kumar, Jitendra & Bhaskar, Thallada, 2016. "Strategies for selection of thermo-chemical processes for the valorisation of biomass," Renewable Energy, Elsevier, vol. 98(C), pages 226-237.
    44. Halouani, Kamel & Farhat, Habib, 2003. "Depollution of atmospheric emissions of wood pyrolysis furnaces," Renewable Energy, Elsevier, vol. 28(1), pages 129-138.
    45. Xu, Xiwei & Enchen, Jiang & Mingfeng, Wang & Bosong, Li & Ling, Zhou, 2012. "Hydrogen production by catalytic cracking of rice husk over Fe2O3/γ-Al2O3 catalyst," Renewable Energy, Elsevier, vol. 41(C), pages 23-28.
    46. Choi, Suek Joo & Park, Sung Hoon & Jeon, Jong-Ki & Lee, In Gu & Ryu, Changkook & Suh, Dong Jin & Park, Young-Kwon, 2013. "Catalytic conversion of particle board over microporous catalysts," Renewable Energy, Elsevier, vol. 54(C), pages 105-110.
    47. Kurji, H. & Valera-Medina, A. & Runyon, J. & Giles, A. & Pugh, D. & Marsh, R. & Cerone, N. & Zimbardi, F. & Valerio, V., 2016. "Combustion characteristics of biodiesel saturated with pyrolysis oil for power generation in gas turbines," Renewable Energy, Elsevier, vol. 99(C), pages 443-451.
    48. Kim, Jeong Wook & Lee, Hyung Won & Lee, In-Gu & Jeon, Jong-Ki & Ryu, Changkook & Park, Sung Hoon & Jung, Sang-Chul & Park, Young-Kwon, 2014. "Influence of reaction conditions on bio-oil production from pyrolysis of construction waste wood," Renewable Energy, Elsevier, vol. 65(C), pages 41-48.
    49. Choi, Hang Seok & Choi, Yeon Seok & Park, Hoon Chae, 2012. "Fast pyrolysis characteristics of lignocellulosic biomass with varying reaction conditions," Renewable Energy, Elsevier, vol. 42(C), pages 131-135.
    50. Kim, Kwang Ho & Kim, Tae-Seung & Lee, Soo-Min & Choi, Donha & Yeo, Hwanmyeong & Choi, In-Gyu & Choi, Joon Weon, 2013. "Comparison of physicochemical features of biooils and biochars produced from various woody biomasses by fast pyrolysis," Renewable Energy, Elsevier, vol. 50(C), pages 188-195.
    51. Vichaphund, Supawan & Aht-ong, Duangdao & Sricharoenchaikul, Viboon & Atong, Duangduen, 2014. "Catalytic upgrading pyrolysis vapors of Jatropha waste using metal promoted ZSM-5 catalysts: An analytical PY-GC/MS," Renewable Energy, Elsevier, vol. 65(C), pages 70-77.
    52. Yuan, Xinsong & He, Tao & Cao, Hongliang & Yuan, Qiaoxia, 2017. "Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods," Renewable Energy, Elsevier, vol. 107(C), pages 489-496.
    53. Zeng, Kuo & Soria, José & Gauthier, Daniel & Mazza, Germán & Flamant, Gilles, 2016. "Modeling of beech wood pellet pyrolysis under concentrated solar radiation," Renewable Energy, Elsevier, vol. 99(C), pages 721-729.
    54. Jin, Wenjia & Singh, Kaushlendra & Zondlo, John, 2015. "Co-processing of pyrolysis vapors with bio-chars for ex-situ upgrading," Renewable Energy, Elsevier, vol. 83(C), pages 638-645.
    55. Na, Jeong-Geol & Park, Young-Kwon & Kim, Doo Il & Oh, You-Kwan & Jeon, Sang Goo & Kook, Jin Woo & Shin, Ji Hoon & Lee, See Hoon, 2015. "Rapid pyrolysis behavior of oleaginous microalga, Chlorella sp. KR-1 with different triglyceride contents," Renewable Energy, Elsevier, vol. 81(C), pages 779-784.
    56. Haykiri-Acma, H. & Yaman, S., 2010. "Interaction between biomass and different rank coals during co-pyrolysis," Renewable Energy, Elsevier, vol. 35(1), pages 288-292.
    57. Onay, Ozlem & Kockar, O.Mete, 2003. "Slow, fast and flash pyrolysis of rapeseed," Renewable Energy, Elsevier, vol. 28(15), pages 2417-2433.
    58. Abbasi, Tasneem & Abbasi, S.A., 2010. "Biomass energy and the environmental impacts associated with its production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 919-937, April.
    59. Putun, E. & Kockar, M. & Gercel, F. & Brown, S. & Andresen, J. & McRae, C. & Snape, C.E., 1994. "Assessment of the effects of hydrogen pressure on biomass pyrolysis: A study of Euphorbia Rigida, sunflower oil industrial waste and pure cellulose," Renewable Energy, Elsevier, vol. 5(5), pages 816-818.
    60. Jeong, Yeon Woo & Choi, Sang Kyu & Choi, Yeon Seok & Kim, Seock Joon, 2015. "Production of biocrude-oil from swine manure by fast pyrolysis and analysis of its characteristics," Renewable Energy, Elsevier, vol. 79(C), pages 14-19.
    61. Baniasadi, Mahsa & Tugnoli, Alessandro & Conti, Roberto & Torri, Cristian & Fabbri, Daniele & Cozzani, Valerio, 2016. "Waste to energy valorization of poultry litter by slow pyrolysis," Renewable Energy, Elsevier, vol. 90(C), pages 458-468.
    62. Haykiri-Acma, H. & Yaman, S. & Kucukbayrak, S., 2006. "Effect of heating rate on the pyrolysis yields of rapeseed," Renewable Energy, Elsevier, vol. 31(6), pages 803-810.
    63. Posom, Jetsada & Saechua, Wanphut & Sirisomboon, Panmanas, 2017. "Evaluation of pyrolysis characteristics of milled bamboo using near-infrared spectroscopy," Renewable Energy, Elsevier, vol. 103(C), pages 653-665.
    64. Li, Hongyu & Xu, Qingli & Xue, Hanshen & Yan, Yongjie, 2009. "Catalytic reforming of the aqueous phase derived from fast-pyrolysis of biomass," Renewable Energy, Elsevier, vol. 34(12), pages 2872-2877.
    65. Sharma, Rajeev & Sheth, Pratik N. & Gujrathi, Ashish M., 2016. "Kinetic modeling and simulation: Pyrolysis of Jatropha residue de-oiled cake," Renewable Energy, Elsevier, vol. 86(C), pages 554-562.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    2. Zeng, Kuo & Soria, José & Gauthier, Daniel & Mazza, Germán & Flamant, Gilles, 2016. "Modeling of beech wood pellet pyrolysis under concentrated solar radiation," Renewable Energy, Elsevier, vol. 99(C), pages 721-729.
    3. Das, Bikashbindu & Mohanty, Kaustubha, 2019. "A review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud," Renewable Energy, Elsevier, vol. 143(C), pages 1791-1811.
    4. Hemant Ghai & Deepak Sakhuja & Shikha Yadav & Preeti Solanki & Chayanika Putatunda & Ravi Kant Bhatia & Arvind Kumar Bhatt & Sunita Varjani & Yung-Hun Yang & Shashi Kant Bhatia & Abhishek Walia, 2022. "An Overview on Co-Pyrolysis of Biodegradable and Non-Biodegradable Wastes," Energies, MDPI, vol. 15(11), pages 1-27, June.
    5. Granada, Enrique & Míguez, J.L. & Febrero, Lara & Collazo, Joaquín & Eguía, Pablo, 2013. "Development of an experimental technique for oil recovery during biomass pyrolysis," Renewable Energy, Elsevier, vol. 60(C), pages 179-184.
    6. Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
    7. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    8. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    9. Braimakis, Konstantinos & Atsonios, Konstantinos & Panopoulos, Kyriakos D. & Karellas, Sotirios & Kakaras, Emmanuel, 2014. "Economic evaluation of decentralized pyrolysis for the production of bio-oil as an energy carrier for improved logistics towards a large centralized gasification plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 57-72.
    10. Chintala, Venkateswarlu, 2018. "Production, upgradation and utilization of solar assisted pyrolysis fuels from biomass – A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 120-130.
    11. Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    12. Akhtar, Javaid & Saidina Amin, NorAishah, 2012. "A review on operating parameters for optimum liquid oil yield in biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5101-5109.
    13. Hasan, M.M. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Jahirul, M.I., 2021. "Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    14. Isa, Khairuddin Md & Abdullah, Tuan Amran Tuan & Ali, Umi Fazara Md, 2018. "Hydrogen donor solvents in liquefaction of biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1259-1268.
    15. Gollakota, Anjani R.K. & Reddy, Madhurima & Subramanyam, Malladi D. & Kishore, Nanda, 2016. "A review on the upgradation techniques of pyrolysis oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1543-1568.
    16. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    17. Choi, Sang Kyu & Choi, Yeon Seok & Han, So Young & Kim, Seock Joon & Rahman, Tawsif & Jeong, Yeon Woo & Van Nguyen, Quynh & Cha, Young Rok, 2019. "Bio-crude oil production from a new genotype of Miscanthus sacchariflorus Geodae-Uksae 1," Renewable Energy, Elsevier, vol. 144(C), pages 153-158.
    18. Sulaiman, F. & Abdullah, N., 2011. "Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches," Energy, Elsevier, vol. 36(5), pages 2352-2359.
    19. Juan Luis Aguirre & Juan Baena & María Teresa Martín & Leonor Nozal & Sergio González & José Luis Manjón & Manuel Peinado, 2020. "Composition, Ageing and Herbicidal Properties of Wood Vinegar Obtained through Fast Biomass Pyrolysis," Energies, MDPI, vol. 13(10), pages 1-17, May.
    20. Collazo, Joaquín & Pazó, José Antonio & Granada, Enrique & Saavedra, Ángeles & Eguía, Pablo, 2012. "Determination of the specific heat of biomass materials and the combustion energy of coke by DSC analysis," Energy, Elsevier, vol. 45(1), pages 746-752.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:129:y:2018:i:pb:p:695-716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.