IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v143y2019icp1791-1811.html
   My bibliography  Save this article

A review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud

Author

Listed:
  • Das, Bikashbindu
  • Mohanty, Kaustubha

Abstract

Conversion of wastes to energy and other value-added products is considered as a suitable method towards energy security. Wastes from various sources are becoming potential feedstocks for energy production through different techniques. The economy and sustainability of these processes demand the use of low-cost catalysts. Red mud (RM) is one of the most abundantly produced industrial wastes from aluminum industries. Such a huge production of RM, its alkaline nature and the presence of a small quantity of radioactive elements make it an environmental liability. Out of various utilization methods, RM as a catalyst for different chemical processes has been very successful. Presence of many valuable metals in RM, in particular, Fe makes it a suitable catalyst for energy production through processes such as pyrolysis, hydrotreating, transesterification and H2 production from biomass and other sources. This article critically reviews the advances in sustainable energy production through different processes mentioned above by RM based catalysts. Different characterization, activation and stability study of RM along with outcomes and mechanism of these processes are discussed. Furthermore, drawbacks associated with the low catalytic activity of RM and works that need to be carried out in the future for the improvement of its catalytic activity are discussed in detail.

Suggested Citation

  • Das, Bikashbindu & Mohanty, Kaustubha, 2019. "A review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud," Renewable Energy, Elsevier, vol. 143(C), pages 1791-1811.
  • Handle: RePEc:eee:renene:v:143:y:2019:i:c:p:1791-1811
    DOI: 10.1016/j.renene.2019.05.114
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119307876
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.05.114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saba, Tony & Estephane, Jane & El Khoury, Bilal & El Khoury, Maroulla & Khazma, Mahmoud & El Zakhem, Henri & Aouad, Samer, 2016. "Biodiesel production from refined sunflower vegetable oil over KOH/ZSM5 catalysts," Renewable Energy, Elsevier, vol. 90(C), pages 301-306.
    2. Dandi̇k, L. & Aksoy, H.A., 1999. "Effect of catalyst on the pyrolysis of used oil carried out in a fractionating pyrolysis reactor," Renewable Energy, Elsevier, vol. 16(1), pages 1007-1010.
    3. Stürmer, Bernhard & Novakovits, Philipp & Luidolt, Alexander & Zweiler, Richard, 2019. "Potential of renewable methane by anaerobic digestion from existing plant stock – An economic reflection of an Austrian region," Renewable Energy, Elsevier, vol. 130(C), pages 920-929.
    4. Malhotra, Rashi & Ali, Amjad, 2018. "Lithium-doped ceria supported SBA−15 as mesoporous solid reusable and heterogeneous catalyst for biodiesel production via simultaneous esterification and transesterification of waste cottonseed oil," Renewable Energy, Elsevier, vol. 119(C), pages 32-44.
    5. Chen, Ying-Chen & Lin, Dai-Ying & Chen, Bing-Hung, 2019. "Metasilicate-based catalyst prepared from natural diatomaceous earth for biodiesel production," Renewable Energy, Elsevier, vol. 138(C), pages 1042-1050.
    6. Yoosuk, Boonyawan & Sanggam, Paphawee & Wiengket, Sakdipat & Prasassarakich, Pattarapan, 2019. "Hydrodeoxygenation of oleic acid and palmitic acid to hydrocarbon-like biofuel over unsupported Ni-Mo and Co-Mo sulfide catalysts," Renewable Energy, Elsevier, vol. 139(C), pages 1391-1399.
    7. Shi, Guoliang & Yu, Feng & Wang, Yan & Pan, Dahai & Wang, Huigang & Li, Ruifeng, 2016. "A novel one-pot synthesis of tetragonal sulfated zirconia catalyst with high activity for biodiesel production from the transesterification of soybean oil," Renewable Energy, Elsevier, vol. 92(C), pages 22-29.
    8. Lu, Min & Lv, Pengmei & Yuan, Zhenhong & Li, Huiwen, 2013. "The study of bimetallic Ni–Co/cordierite catalyst for cracking of tar from biomass pyrolysis," Renewable Energy, Elsevier, vol. 60(C), pages 522-528.
    9. Alsharifi, Mariam & Znad, Hussein & Hena, Sufia & Ang, Ming, 2017. "Biodiesel production from canola oil using novel Li/TiO2 as a heterogeneous catalyst prepared via impregnation method," Renewable Energy, Elsevier, vol. 114(PB), pages 1077-1089.
    10. Frattini, D. & Cinti, G. & Bidini, G. & Desideri, U. & Cioffi, R. & Jannelli, E., 2016. "A system approach in energy evaluation of different renewable energies sources integration in ammonia production plants," Renewable Energy, Elsevier, vol. 99(C), pages 472-482.
    11. Araújo, Aruzza Mabel de Morais & Lima, Regineide de Oliveira & Gondim, Amanda Duarte & Diniz, Juraci & Souza, Luiz Di & Araujo, Antonio Souza de, 2017. "Thermal and catalytic pyrolysis of sunflower oil using AlMCM-41," Renewable Energy, Elsevier, vol. 101(C), pages 900-906.
    12. Vichaphund, Supawan & Aht-ong, Duangdao & Sricharoenchaikul, Viboon & Atong, Duangduen, 2015. "Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 prepared by ion-exchange and impregnation methods," Renewable Energy, Elsevier, vol. 79(C), pages 28-37.
    13. Mutreja, Vishal & Singh, Satnam & Ali, Amjad, 2014. "Potassium impregnated nanocrystalline mixed oxides of La and Mg as heterogeneous catalysts for transesterification," Renewable Energy, Elsevier, vol. 62(C), pages 226-233.
    14. Park, Young-Kwon & Yoo, Myung Lang & Jin, Sung Ho & Park, Sung Hoon, 2015. "Catalytic fast pyrolysis of waste pepper stems over HZSM-5," Renewable Energy, Elsevier, vol. 79(C), pages 20-27.
    15. Chaihad, Nichaboon & Karnjanakom, Surachai & Kurnia, Irwan & Yoshida, Akihiro & Abudula, Abuliti & Reubroycharoen, Prasert & Guan, Guoqing, 2019. "Catalytic upgrading of bio-oils over high alumina zeolites," Renewable Energy, Elsevier, vol. 136(C), pages 1304-1310.
    16. Kaewpengkrow, Prangtip & Atong, Duangduen & Sricharoenchaikul, Viboon, 2014. "Effect of Pd, Ru, Ni and ceramic supports on selective deoxygenation and hydrogenation of fast pyrolysis Jatropha residue vapors," Renewable Energy, Elsevier, vol. 65(C), pages 92-101.
    17. Wang, Wenliang & Li, Xinping & Ye, Dan & Cai, LiPing & Shi, Sheldon Q., 2018. "Catalytic pyrolysis of larch sawdust for phenol-rich bio-oil using different catalysts," Renewable Energy, Elsevier, vol. 121(C), pages 146-152.
    18. Lee, Hyung Won & Choi, Suek Joo & Jeon, Jong-Ki & Park, Sung Hoon & Jung, Sang-Chul & Park, Young-Kwon, 2015. "Catalytic conversion of waste particle board and polypropylene over H-beta and HY zeolites," Renewable Energy, Elsevier, vol. 79(C), pages 9-13.
    19. Aleixandre-Tudó, José Luis & Castelló-Cogollos, Lourdes & Aleixandre, José Luis & Aleixandre-Benavent, Rafael, 2019. "Renewable energies: Worldwide trends in research, funding and international collaboration," Renewable Energy, Elsevier, vol. 139(C), pages 268-278.
    20. Feng, Junfeng & Yang, Zhongzhi & Hse, Chung-yun & Su, Qiuli & Wang, Kui & Jiang, Jianchun & Xu, Junming, 2017. "In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading," Renewable Energy, Elsevier, vol. 105(C), pages 140-148.
    21. Laosiripojana, Weerawan & Kiatkittipong, Worapon & Sakdaronnarong, Chularat & Assabumrungrat, Suttichai & Laosiripojana, Navadol, 2019. "Catalytic hydrotreatment of pyrolysis-oil with bimetallic Ni-Cu catalysts supported by several mono-oxide and mixed-oxide materials," Renewable Energy, Elsevier, vol. 135(C), pages 1048-1055.
    22. Awadallah, Ahmed E. & Aboul-Enein, Ateyya A. & Aboul-Gheit, Ahmed K., 2013. "Various nickel doping in commercial Ni–Mo/Al2O3 as catalysts for natural gas decomposition to COx-free hydrogen production," Renewable Energy, Elsevier, vol. 57(C), pages 671-678.
    23. Islam, Aminul & Taufiq-Yap, Yun Hui & Chu, Chi-Ming & Ravindra, Pogaku & Chan, Eng-Seng, 2013. "Transesterification of palm oil using KF and NaNO3 catalysts supported on spherical millimetric γ-Al2O3," Renewable Energy, Elsevier, vol. 59(C), pages 23-29.
    24. Ozbay, Nurgul & Yargic, Adife Seyda & Yarbay Sahin, Rahmiye Zerrin & Yaman, Elif, 2019. "Valorization of banana peel waste via in-situ catalytic pyrolysis using Al-Modified SBA-15," Renewable Energy, Elsevier, vol. 140(C), pages 633-646.
    25. Patel, Bhavish & Arcelus-Arrillaga, Pedro & Izadpanah, Arash & Hellgardt, Klaus, 2017. "Catalytic Hydrotreatment of algal biocrude from fast Hydrothermal Liquefaction," Renewable Energy, Elsevier, vol. 101(C), pages 1094-1101.
    26. Wang, Ze & Dang, Dan & Lin, Weigang & Song, Wenli, 2017. "Catalytic pyrolysis of corn straw fermentation residue for producing alkyl phenols," Renewable Energy, Elsevier, vol. 109(C), pages 287-294.
    27. Ramesh, Arumugam & Tamizhdurai, Perumal & Shanthi, Kannan, 2019. "Catalytic hydrodeoxygenation of jojoba oil to the green-fuel application on Ni-MoS/Mesoporous zirconia-silica catalysts," Renewable Energy, Elsevier, vol. 138(C), pages 161-173.
    28. Xu, Xiwei & Enchen, Jiang & Mingfeng, Wang & Bosong, Li & Ling, Zhou, 2012. "Hydrogen production by catalytic cracking of rice husk over Fe2O3/γ-Al2O3 catalyst," Renewable Energy, Elsevier, vol. 41(C), pages 23-28.
    29. Narra, Madhuri & Macwan, Kumud & Vyas, Bipin & Harijan, Manisha R. & Shah, Disha & Balasubramanian, Velmurugan & Prajapati, Anil, 2018. "A bio-refinery concept for production of bio-methane and bio-ethanol from nitric acid pre-treated corncob and recovery of a high value fuel from a waste stream," Renewable Energy, Elsevier, vol. 127(C), pages 1-10.
    30. Verma, Puneet & Sharma, M.P., 2016. "Review of process parameters for biodiesel production from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1063-1071.
    31. Essamlali, Younes & Amadine, Othmane & Fihri, Aziz & Zahouily, Mohamed, 2019. "Sodium modified fluorapatite as a sustainable solid bi-functional catalyst for biodiesel production from rapeseed oil," Renewable Energy, Elsevier, vol. 133(C), pages 1295-1307.
    32. Vichaphund, Supawan & Aht-ong, Duangdao & Sricharoenchaikul, Viboon & Atong, Duangduen, 2014. "Catalytic upgrading pyrolysis vapors of Jatropha waste using metal promoted ZSM-5 catalysts: An analytical PY-GC/MS," Renewable Energy, Elsevier, vol. 65(C), pages 70-77.
    33. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    34. Hewer, Thiago L.R. & Souza, Adriana G.F. & Roseno, Karina T.C. & Moreira, Paulo F. & Bonfim, Rodrigo & Alves, Rita M.B. & Schmal, Martin, 2018. "Influence of acid sites on the hydrodeoxygenation of anisole with metal supported on SBA-15 and SAPO-11," Renewable Energy, Elsevier, vol. 119(C), pages 615-624.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Xueying & Li, Helong & Wang, Shuizhong & Liu, Zhenzhen & Ma, Jian-feng & Liu, Xing-e & Song, Guoyong, 2022. "Hydrodeoxygenation of lignin biophenolics to cyclohexanes over sub-nanometric Ru multifunctional catalyst," Renewable Energy, Elsevier, vol. 201(P1), pages 724-733.
    2. Wang, Quan & Wenlei Xie, & Guo, Lihong, 2022. "Molybdenum and zirconium oxides supported on KIT-6 silica: A recyclable composite catalyst for one–pot biodiesel production from simulated low-quality oils," Renewable Energy, Elsevier, vol. 187(C), pages 907-922.
    3. Xie, Wenlei & Gao, Chunli & Li, Jiangbo, 2021. "Sustainable biodiesel production from low-quantity oils utilizing H6PV3MoW8O40 supported on magnetic Fe3O4/ZIF-8 composites," Renewable Energy, Elsevier, vol. 168(C), pages 927-937.
    4. Kang, Kang & Klinghoffer, Naomi B. & ElGhamrawy, Islam & Berruti, Franco, 2021. "Thermochemical conversion of agroforestry biomass and solid waste using decentralized and mobile systems for renewable energy and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Bakhtyari, Ali & Rahimpour, Mohammad Reza & Raeissi, Sona, 2020. "Cobalt-molybdenum catalysts for the hydrodeoxygenation of cyclohexanone," Renewable Energy, Elsevier, vol. 150(C), pages 443-455.
    6. Yan, Xianyao & Li, Yingjie & Sun, Chaoying & Zhang, Chunxiao & Yang, Liguo & Fan, Xiaoxu & Chu, Leizhe, 2022. "Enhanced H2 production from steam gasification of biomass by red mud-doped Ca-Al-Ce bi-functional material," Applied Energy, Elsevier, vol. 312(C).
    7. Xie, Wenlei & Li, Jiangbo, 2023. "Magnetic solid catalysts for sustainable and cleaner biodiesel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    8. Irfan, Muhammad & Zhou, Lei & Ji, Jia-Heng & Chen, Jing & Yuan, Shan & Liang, Tian-Tian & Liu, Jin-Feng & Yang, Shi-Zhong & Gu, Ji-Dong & Mu, Bo-Zhong, 2020. "Enhanced energy generation and altered biochemical pathways in an enrichment microbial consortium amended with natural iron minerals," Renewable Energy, Elsevier, vol. 159(C), pages 585-594.
    9. Hu, Mian & Zhang, Haiyang & Ye, Zhiheng & Ma, Jiajia & Chen, Zhihua & Wang, Junliang & Wang, Cheng & Pan, Zhiyan, 2022. "Thermogravimetric kinetics and pyrolytic tri-state products analysis towards insights into understanding the pyrolysis mechanism of Spirulina platensis with calcium oxide," Renewable Energy, Elsevier, vol. 184(C), pages 498-509.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    2. Bakhtyari, Ali & Rahimpour, Mohammad Reza & Raeissi, Sona, 2020. "Cobalt-molybdenum catalysts for the hydrodeoxygenation of cyclohexanone," Renewable Energy, Elsevier, vol. 150(C), pages 443-455.
    3. Nishu, & Li, Chong & Chai, Meiyun & Rahman, Md. Maksudur & Li, Yingkai & Sarker, Manobendro & Liu, Ronghou, 2021. "Performance of alkali and Ni-modified ZSM-5 during catalytic pyrolysis of extracted hemicellulose from rice straw for the production of aromatic hydrocarbons," Renewable Energy, Elsevier, vol. 175(C), pages 936-951.
    4. Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
    5. Ramesh, Arumugam & Tamizhdurai, Perumal & Shanthi, Kannan, 2019. "Catalytic hydrodeoxygenation of jojoba oil to the green-fuel application on Ni-MoS/Mesoporous zirconia-silica catalysts," Renewable Energy, Elsevier, vol. 138(C), pages 161-173.
    6. Eldiehy, Khalifa S.H. & Gohain, Minakshi & Daimary, Niran & Borah, Doljit & Mandal, Manabendra & Deka, Dhanapati, 2022. "Radish (Raphanus sativus L.) leaves: A novel source for a highly efficient heterogeneous base catalyst for biodiesel production using waste soybean cooking oil and Scenedesmus obliquus oil," Renewable Energy, Elsevier, vol. 191(C), pages 888-901.
    7. Hemant Ghai & Deepak Sakhuja & Shikha Yadav & Preeti Solanki & Chayanika Putatunda & Ravi Kant Bhatia & Arvind Kumar Bhatt & Sunita Varjani & Yung-Hun Yang & Shashi Kant Bhatia & Abhishek Walia, 2022. "An Overview on Co-Pyrolysis of Biodegradable and Non-Biodegradable Wastes," Energies, MDPI, vol. 15(11), pages 1-27, June.
    8. Srivatsa, Srikanth Chakravartula & Li, Fanghua & Bhattacharya, Sankar, 2019. "Optimization of reaction parameters for bio-oil production by catalytic pyrolysis of microalga Tetraselmis suecica: Influence of Ni-loading on the bio-oil composition," Renewable Energy, Elsevier, vol. 142(C), pages 426-436.
    9. Chen, Ying-Chen & Lin, Dai-Ying & Chen, Bing-Hung, 2019. "Metasilicate-based catalyst prepared from natural diatomaceous earth for biodiesel production," Renewable Energy, Elsevier, vol. 138(C), pages 1042-1050.
    10. Oh, Shinyoung & Lee, Jae Hoon & Choi, Joon Weon, 2020. "Hydrodeoxygenation of crude bio-oil with various metal catalysts in a continuous-flow reactor and evaluation of emulsion properties of upgraded bio-oil with petroleum fuel," Renewable Energy, Elsevier, vol. 160(C), pages 1160-1167.
    11. Chaihad, Nichaboon & Situmorang, Yohanes Andre & Anniwaer, Aisikaer & Kurnia, Irwan & Karnjanakom, Surachai & Kasai, Yutaka & Abudula, Abuliti & Reubroycharoen, Prasert & Guan, Guoqing, 2021. "Preparation of various hierarchical HZSM-5 based catalysts for in-situ fast upgrading of bio-oil," Renewable Energy, Elsevier, vol. 169(C), pages 283-292.
    12. Eleni F. Iliopoulou & Kostas S. Triantafyllidis & Angelos A. Lappas, 2019. "Overview of catalytic upgrading of biomass pyrolysis vapors toward the production of fuels and high‐value chemicals," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(1), January.
    13. Zheng, Yunwu & Wang, Jida & Liu, Can & Lu, Yi & Lin, Xu & Li, Wenbin & Zheng, Zhifeng, 2020. "Efficient and stable Ni-Cu catalysts for ex situ catalytic pyrolysis vapor upgrading of oleic acid into hydrocarbon: Effect of catalyst support, process parameters and Ni-to-Cu mixed ratio," Renewable Energy, Elsevier, vol. 154(C), pages 797-812.
    14. Saraeian, Alireza & Nolte, Michael W. & Shanks, Brent H., 2019. "Deoxygenation of biomass pyrolysis vapors: Improving clarity on the fate of carbon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 262-280.
    15. Al-Saadi, Ali & Mathan, Bobby & He, Yinghe, 2020. "Esterification and transesterification over SrO–ZnO/Al2O3 as a novel bifunctional catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 158(C), pages 388-399.
    16. Daimary, Niran & Boruah, Pankaj & Eldiehy, Khalifa S.H. & Pegu, Tapan & Bardhan, Pritam & Bora, Utpal & Mandal, Manabendra & Deka, Dhanapati, 2022. "Musa acuminata peel: A bioresource for bio-oil and by-product utilization as a sustainable source of renewable green catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 187(C), pages 450-462.
    17. Balasundram, Vekes & Ibrahim, Norazana & Kasmani, Rafiziana Md. & Isha, Ruzinah & Hamid, Mohd. Kamaruddin Abd. & Hasbullah, Hasrinah & Ali, Roshafima Rasit, 2018. "Catalytic upgrading of sugarcane bagasse pyrolysis vapours over rare earth metal (Ce) loaded HZSM-5: Effect of catalyst to biomass ratio on the organic compounds in pyrolysis oil," Applied Energy, Elsevier, vol. 220(C), pages 787-799.
    18. Ozbay, Nurgul & Yargic, Adife Seyda & Yarbay Sahin, Rahmiye Zerrin & Yaman, Elif, 2019. "Valorization of banana peel waste via in-situ catalytic pyrolysis using Al-Modified SBA-15," Renewable Energy, Elsevier, vol. 140(C), pages 633-646.
    19. Huang, Yongcheng & Li, Yaoting & Han, Xudong & Zhang, Jiating & Luo, Kun & Yang, Shangsheng & Wang, Jiyuan, 2020. "Investigation on fuel properties and engine performance of the extraction phase liquid of bio-oil/biodiesel blends," Renewable Energy, Elsevier, vol. 147(P1), pages 1990-2002.
    20. Liang, Jie & Shan, Guangcun & Sun, Yifei, 2021. "Catalytic fast pyrolysis of lignocellulosic biomass: Critical role of zeolite catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:143:y:2019:i:c:p:1791-1811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.