IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v8y2019i1ne322.html
   My bibliography  Save this article

Overview of catalytic upgrading of biomass pyrolysis vapors toward the production of fuels and high‐value chemicals

Author

Listed:
  • Eleni F. Iliopoulou
  • Kostas S. Triantafyllidis
  • Angelos A. Lappas

Abstract

The application of heterogeneous catalysis in biomass pyrolysis is considered as one of the most promising methods to improve bio‐oil quality by minimizing its undesirable properties (high viscosity, corrosivity, instability, etc.) and producing renewable fuels and high‐value chemicals. Catalytic fast pyrolysis (CFP) of biomass refers both to the “in situ” and “ex situ or two‐stage” upgrading. A plethora of catalytic materials have been investigated in the literature for both approaches, including conventional microporous zeolites, ordered mesoporous aluminosilicates, promoted or not with several transition metals, as well as various metal (nano)oxide catalysts with Lewis acidity. Recently, hybrid micro/mesoporous and basic materials have been also suggested exhibiting most promising results due to combined micro/mesoporosity and adequate balance of acid and basic sites. Optimum catalysts are required to retain deoxygenation, enhance yields of aromatics, and other valuable compounds (such as phenolics), while limiting coke formation. Coke formation is one of the reasons of catalyst deactivation; a very challenging issue during biomass CFP, especially using zeolites. The deactivation process is affected by many factors, including the composition of the feedstock (inorganic minerals present in the feedstock may also deposit on the catalyst), reaction conditions, and the nature/properties of the catalysts used in CFP. Precoking on the surface of zeolites or MgO deposition are among the proposed effective ways to suppress coke formation and thus, catalyst deactivation. This article is categorized under: Bioenergy > Science and Materials Energy Research & Innovation > Science and Materials Energy and Transport > Science and Materials

Suggested Citation

  • Eleni F. Iliopoulou & Kostas S. Triantafyllidis & Angelos A. Lappas, 2019. "Overview of catalytic upgrading of biomass pyrolysis vapors toward the production of fuels and high‐value chemicals," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(1), January.
  • Handle: RePEc:bla:wireae:v:8:y:2019:i:1:n:e322
    DOI: 10.1002/wene.322
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.322
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.322?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Javier Fermoso & Patricia Pizarro & Juan M. Coronado & David P. Serrano, 2017. "Advanced biofuels production by upgrading of pyrolysis bio‐oil," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(4), July.
    2. Arteaga-Pérez, Luis E. & Gómez Cápiro, Oscar & Romero, Romina & Delgado, Aaron & Olivera, Patricia & Ronsse, Frederik & Jiménez, Romel, 2017. "In situ catalytic fast pyrolysis of crude and torrefied Eucalyptus globulus using carbon aerogel-supported catalysts," Energy, Elsevier, vol. 128(C), pages 701-712.
    3. Horne, Patrick A. & Williams, Paul T., 1994. "Premium quality fuels and chemicals from the fluidised bed pyrolysis of biomass with zeolite catalyst upgrading," Renewable Energy, Elsevier, vol. 5(5), pages 810-812.
    4. Vichaphund, Supawan & Aht-ong, Duangdao & Sricharoenchaikul, Viboon & Atong, Duangduen, 2014. "Catalytic upgrading pyrolysis vapors of Jatropha waste using metal promoted ZSM-5 catalysts: An analytical PY-GC/MS," Renewable Energy, Elsevier, vol. 65(C), pages 70-77.
    5. Bridgwater, A. V. & Peacocke, G. V. C., 2000. "Fast pyrolysis processes for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(1), pages 1-73, March.
    6. Vichaphund, Supawan & Aht-ong, Duangdao & Sricharoenchaikul, Viboon & Atong, Duangduen, 2015. "Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 prepared by ion-exchange and impregnation methods," Renewable Energy, Elsevier, vol. 79(C), pages 28-37.
    7. Qiang Lu & Zhi-Fei Zhang & Chang-Qing Dong & Xi-Feng Zhu, 2010. "Catalytic Upgrading of Biomass Fast Pyrolysis Vapors with Nano Metal Oxides: An Analytical Py-GC/MS Study," Energies, MDPI, vol. 3(11), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter D. Lund & John Byrne, 2020. "Little time left to reverse emissions—Growing hope despite disappointing CO2 trend," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    2. Kan, Tao & Strezov, Vladimir & Evans, Tim & He, Jing & Kumar, Ravinder & Lu, Qiang, 2020. "Catalytic pyrolysis of lignocellulosic biomass: A review of variations in process factors and system structure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Agus Haryanto & Wahyu Hidayat & Udin Hasanudin & Dewi Agustina Iryani & Sangdo Kim & Sihyun Lee & Jiho Yoo, 2021. "Valorization of Indonesian Wood Wastes through Pyrolysis: A Review," Energies, MDPI, vol. 14(5), pages 1-25, March.
    4. Wu, Yujian & Wang, Haoyu & Li, Haoyang & Han, Xue & Zhang, Mingyuan & Sun, Yan & Fan, Xudong & Tu, Ren & Zeng, Yimin & Xu, Chunbao Charles & Xu, Xiwei, 2022. "Applications of catalysts in thermochemical conversion of biomass (pyrolysis, hydrothermal liquefaction and gasification): A critical review," Renewable Energy, Elsevier, vol. 196(C), pages 462-481.
    5. Choe, Bomin & Lee, Shinje & Won, Wangyun, 2021. "Coproduction of butene oligomers and adipic acid from lignocellulosic biomass: Process design and evaluation," Energy, Elsevier, vol. 235(C).
    6. Ke, Linyao & Wu, Qiuhao & Zhou, Nan & Xiong, Jianyun & Yang, Qi & Zhang, Letian & Wang, Yuanyuan & Dai, Leilei & Zou, Rongge & Liu, Yuhuan & Ruan, Roger & Wang, Yunpu, 2022. "Lignocellulosic biomass pyrolysis for aromatic hydrocarbons production: Pre and in-process enhancement methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    7. Wolfram Buss & Jasmine Hertzog & Julian Pietrzyk & Vincent Carré & C. Logan Mackay & Frédéric Aubriet & Ondřej Mašek, 2020. "Comparison of Pyrolysis Liquids from Continuous and Batch Biochar Production—Influence of Feedstock Evidenced by FTICR MS," Energies, MDPI, vol. 14(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Jie & Shan, Guangcun & Sun, Yifei, 2021. "Catalytic fast pyrolysis of lignocellulosic biomass: Critical role of zeolite catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    3. Saraeian, Alireza & Nolte, Michael W. & Shanks, Brent H., 2019. "Deoxygenation of biomass pyrolysis vapors: Improving clarity on the fate of carbon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 262-280.
    4. Qiang Lu & Zhi-Bo Zhang & Hang-Tao Liao & Xiao-Chu Yang & Chang-Qing Dong, 2012. "Lubrication Properties of Bio-Oil and Its Emulsions with Diesel Oil," Energies, MDPI, vol. 5(3), pages 1-11, March.
    5. Ming, Zi-Qiang & Liu, Yun-Quan & Ye, Yue-Yuan & Li, Shui-Rong & Zhao, Ying-Ru & Wang, Duo, 2016. "Study of a new combined method for pre-extraction of essential oils and catalytic fast pyrolysis of pine sawdust," Energy, Elsevier, vol. 116(P1), pages 558-566.
    6. Theodore Dickerson & Juan Soria, 2013. "Catalytic Fast Pyrolysis: A Review," Energies, MDPI, vol. 6(1), pages 1-25, January.
    7. Nishu, & Li, Chong & Yellezuome, Dominic & Li, Yingkai & Liu, Ronghou, 2023. "Catalytic pyrolysis of rice straw for high yield of aromatics over modified ZSM-5 catalysts and its kinetics," Renewable Energy, Elsevier, vol. 209(C), pages 569-580.
    8. Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
    9. Das, Bikashbindu & Mohanty, Kaustubha, 2019. "A review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud," Renewable Energy, Elsevier, vol. 143(C), pages 1791-1811.
    10. Caio Campos Ferreira & Lucas Pinto Bernar & Augusto Fernando de Freitas Costa & Haroldo Jorge da Silva Ribeiro & Marcelo Costa Santos & Nathalia Lobato Moraes & Yasmin Santos Costa & Ana Cláudia Fonse, 2022. "Improving Fuel Properties and Hydrocarbon Content from Residual Fat Pyrolysis Vapors over Activated Red Mud Pellets in Two-Stage Reactor: Optimization of Reaction Time and Catalyst Content," Energies, MDPI, vol. 15(15), pages 1-33, August.
    11. Vichaphund, Supawan & Aht-ong, Duangdao & Sricharoenchaikul, Viboon & Atong, Duangduen, 2015. "Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 prepared by ion-exchange and impregnation methods," Renewable Energy, Elsevier, vol. 79(C), pages 28-37.
    12. Douvartzides, Savvas & Charisiou, Nikolaos D. & Wang, Wen & Papadakis, Vagelis G. & Polychronopoulou, Kyriaki & Goula, Maria A., 2022. "Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part II: Catalytic research," Renewable Energy, Elsevier, vol. 189(C), pages 315-338.
    13. Srivatsa, Srikanth Chakravartula & Li, Fanghua & Bhattacharya, Sankar, 2019. "Optimization of reaction parameters for bio-oil production by catalytic pyrolysis of microalga Tetraselmis suecica: Influence of Ni-loading on the bio-oil composition," Renewable Energy, Elsevier, vol. 142(C), pages 426-436.
    14. Mushtaq, Faisal & Mat, Ramli & Ani, Farid Nasir, 2014. "A review on microwave assisted pyrolysis of coal and biomass for fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 555-574.
    15. Stylianos D. Stefanidis & Konstantinos G. Kalogiannis & Angelos A. Lappas, 2018. "Co‐processing bio‐oil in the refinery for drop‐in biofuels via fluid catalytic cracking," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(3), May.
    16. Cheng Li & Xiaochen Yue & Jun Yang & Yafeng Yang & Haiping Gu & Wanxi Peng, 2019. "Catalytic Fast Pyrolysis of Forestry Wood Waste for Bio-Energy Recovery Using Nano-Catalysts," Energies, MDPI, vol. 12(20), pages 1-12, October.
    17. Soria-Verdugo, Antonio & Rubio-Rubio, Mariano & Goos, Elke & Riedel, Uwe, 2020. "On the characteristic heating and pyrolysis time of thermally small biomass particles in a bubbling fluidized bed reactor," Renewable Energy, Elsevier, vol. 160(C), pages 312-322.
    18. Onarheim, Kristin & Hannula, Ilkka & Solantausta, Yrjö, 2020. "Hydrogen enhanced biofuels for transport via fast pyrolysis of biomass: A conceptual assessment," Energy, Elsevier, vol. 199(C).
    19. Samoraj, Mateusz & Dmytryk, Agnieszka & Tuhy, Łukasz & Zdunek, Anna & Rusek, Piotr & Moustakas, Konstantinos & Chojnacka, Katarzyna, 2023. "Applicability of alfalfa and goldenrod residues after supercritical CO2 extraction to plant micronutrient biosorption and renewable energy production," Energy, Elsevier, vol. 262(PA).
    20. Shirazi, Yaser & Viamajala, Sridhar & Varanasi, Sasidhar, 2016. "High-yield production of fuel- and oleochemical-precursors from triacylglycerols in a novel continuous-flow pyrolysis reactor," Applied Energy, Elsevier, vol. 179(C), pages 755-764.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:8:y:2019:i:1:n:e322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.