IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2020i1p9-d466337.html
   My bibliography  Save this article

Comparison of Pyrolysis Liquids from Continuous and Batch Biochar Production—Influence of Feedstock Evidenced by FTICR MS

Author

Listed:
  • Wolfram Buss

    (UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Crew Building, Alexander Crum, Brown Road, Edinburgh EH9 3FF, UK
    Research School of Biology, Australian National University, 134 Linnaeus Way, Canberra 2601, Australia
    Equal contributing authors.)

  • Jasmine Hertzog

    (LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très Haut Champ, Université de Lorraine, ICPM, 1 Boulevard Arago, CEDEX 03, 57078 Metz, France
    Equal contributing authors.)

  • Julian Pietrzyk

    (UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Crew Building, Alexander Crum, Brown Road, Edinburgh EH9 3FF, UK)

  • Vincent Carré

    (LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très Haut Champ, Université de Lorraine, ICPM, 1 Boulevard Arago, CEDEX 03, 57078 Metz, France)

  • C. Logan Mackay

    (SIRCAMS, School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK)

  • Frédéric Aubriet

    (LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très Haut Champ, Université de Lorraine, ICPM, 1 Boulevard Arago, CEDEX 03, 57078 Metz, France)

  • Ondřej Mašek

    (UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Crew Building, Alexander Crum, Brown Road, Edinburgh EH9 3FF, UK)

Abstract

Bio-oils from biomass pyrolysis can be a resource for upgrading to chemicals or fuels. Here, for the first time, we compare the composition of bio-oils produced from two feedstocks (wheat straw, softwood) in pyrolysis units of different mode of operation (continuous—rotary kiln vs. batch) using Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) in different ionization modes (APPI (+), ESI (+/−)). Our results demonstrate that the pyrolysis unit design had only a minor influence on the composition of bio-oils produced from low-mineral containing wood biomass. Yet, the wheat straw-derived bio-oil produced in the continuous unit comprised lower molecular weight compounds with fewer oxygen-containing functional groups and lower O/C and H/C ratios, compared to bio-oils from batch pyrolysis. Longer residence time of vapours in the heated zone in the rotary kiln and a higher mineral content in wheat straw resulted in increased catalytically-mediated secondary reactions that favoured further bio-oil decomposition. This work shows for the first time that it is possible to produce distinct bio-oils without the need for external catalyst addition, by matching reactor type/design and feedstock.

Suggested Citation

  • Wolfram Buss & Jasmine Hertzog & Julian Pietrzyk & Vincent Carré & C. Logan Mackay & Frédéric Aubriet & Ondřej Mašek, 2020. "Comparison of Pyrolysis Liquids from Continuous and Batch Biochar Production—Influence of Feedstock Evidenced by FTICR MS," Energies, MDPI, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:9-:d:466337
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/9/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/9/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bridgwater, A. V. & Peacocke, G. V. C., 2000. "Fast pyrolysis processes for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(1), pages 1-73, March.
    2. Eleni F. Iliopoulou & Kostas S. Triantafyllidis & Angelos A. Lappas, 2019. "Overview of catalytic upgrading of biomass pyrolysis vapors toward the production of fuels and high‐value chemicals," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(1), January.
    3. Junming Zhu & Chengming Fan & Haijia Shi & Lei Shi, 2019. "Efforts for a Circular Economy in China: A Comprehensive Review of Policies," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 110-118, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Ziyi & Jin, Yanghao & Svanberg, Rikard & Han, Tong & Minidis, Alexander B.E. & Ann-Sofi, Kindstedt Danielsson & Kjeldsen, Christian & Jönsson, Pär G. & Yang, Weihong, 2023. "Continuous catalytic pyrolysis of biomass using a fluidized bed with commercial-ready catalysts for scale-up," Energy, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    2. Makarfi Isa, Yusuf & Ganda, Elvis Tinashe, 2018. "Bio-oil as a potential source of petroleum range fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 69-75.
    3. Ji, Li-Qun & Zhang, Chuang & Fang, Jing-Qi, 2017. "Economic analysis of converting of waste agricultural biomass into liquid fuel: A case study on a biofuel plant in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 224-229.
    4. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    5. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    6. Theodore Dickerson & Juan Soria, 2013. "Catalytic Fast Pyrolysis: A Review," Energies, MDPI, vol. 6(1), pages 1-25, January.
    7. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    8. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    9. Sulaiman, F. & Abdullah, N., 2011. "Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches," Energy, Elsevier, vol. 36(5), pages 2352-2359.
    10. Lim, Jeng Shiun & Abdul Manan, Zainuddin & Wan Alwi, Sharifah Rafidah & Hashim, Haslenda, 2012. "A review on utilisation of biomass from rice industry as a source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3084-3094.
    11. Amutio, M. & Lopez, G. & Artetxe, M. & Elordi, G. & Olazar, M. & Bilbao, J., 2012. "Influence of temperature on biomass pyrolysis in a conical spouted bed reactor," Resources, Conservation & Recycling, Elsevier, vol. 59(C), pages 23-31.
    12. Motasemi, F. & Afzal, Muhammad T., 2013. "A review on the microwave-assisted pyrolysis technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 317-330.
    13. Juan Luis Aguirre & Juan Baena & María Teresa Martín & Leonor Nozal & Sergio González & José Luis Manjón & Manuel Peinado, 2020. "Composition, Ageing and Herbicidal Properties of Wood Vinegar Obtained through Fast Biomass Pyrolysis," Energies, MDPI, vol. 13(10), pages 1-17, May.
    14. Wang, Xiaoquan & Morrison, William & Du, Zhenyi & Wan, Yiqin & Lin, Xiangyang & Chen, Paul & Ruan, Roger, 2012. "Biomass temperature profile development and its implications under the microwave-assisted pyrolysis condition," Applied Energy, Elsevier, vol. 99(C), pages 386-392.
    15. Zhang, Chonghui & Li, Xiangwen & Sun, Yunfei & Chen, Ji & Streimikiene, Dalia, 2023. "Policy modeling consistency analysis during energy crises: Evidence from China's coal power policy," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    16. Huang, Yu-Fong & Kuan, Wen-Hui & Chang, Chun-Yuan, 2018. "Effects of particle size, pretreatment, and catalysis on microwave pyrolysis of corn stover," Energy, Elsevier, vol. 143(C), pages 696-703.
    17. Mathivathanan, Deepak & Mathiyazhagan, K. & Khorana, Sangeeta & Rana, Nripendra P. & Arora, Bimal, 2022. "Drivers of circular economy for small and medium enterprises: Case study on the Indian state of Tamil Nadu," Journal of Business Research, Elsevier, vol. 149(C), pages 997-1015.
    18. Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
    19. Waheed A. Rasaq & Mateusz Golonka & Miklas Scholz & Andrzej Białowiec, 2021. "Opportunities and Challenges of High-Pressure Fast Pyrolysis of Biomass: A Review," Energies, MDPI, vol. 14(17), pages 1-20, August.
    20. Hervé Corvellec & Alison F. Stowell & Nils Johansson, 2022. "Critiques of the circular economy," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 421-432, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:9-:d:466337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.