IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v160y2020icp312-322.html
   My bibliography  Save this article

On the characteristic heating and pyrolysis time of thermally small biomass particles in a bubbling fluidized bed reactor

Author

Listed:
  • Soria-Verdugo, Antonio
  • Rubio-Rubio, Mariano
  • Goos, Elke
  • Riedel, Uwe

Abstract

Pyrolysis of crushed olive stone particles in a lab scale Bubbling Fluidized Bed (BFB) reactor was investigated. The time evolution of the pyrolysis conversion degree of the olive stone particles, while moving freely in the BFB, was determined from the evolution of the mass of olive stones remaining in the bed, measured by a precision scale holding the whole reactor installation. The experimental measurements of the pyrolysis conversion degree were employed to validate a simple model combining heat transfer and chemical kinetics, which is valid for thermally small particles. The model combines the Lumped Capacitance Method (LCM) and the simplified Distributed Activation Energy Model (DAEM) to account for heat transfer and pyrolysis chemical kinetics, respectively. The estimations of the combined LCM-DAEM model for the pyrolysis conversion degree were found to be in good agreement with the experimental measurements for the pyrolysis of olive kernels in a BFB operated at various bed temperatures, fluidizing gas velocities, and biomass particle size ranges. From the combined LCM-DAEM model, the characteristic heating time and the pyrolysis time of the olive stone particles were derived, obtaining a direct relation between these two parameters for constant values of the bed temperature.

Suggested Citation

  • Soria-Verdugo, Antonio & Rubio-Rubio, Mariano & Goos, Elke & Riedel, Uwe, 2020. "On the characteristic heating and pyrolysis time of thermally small biomass particles in a bubbling fluidized bed reactor," Renewable Energy, Elsevier, vol. 160(C), pages 312-322.
  • Handle: RePEc:eee:renene:v:160:y:2020:i:c:p:312-322
    DOI: 10.1016/j.renene.2020.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120310843
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bridgwater, A. V. & Peacocke, G. V. C., 2000. "Fast pyrolysis processes for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(1), pages 1-73, March.
    2. Gao, Zixiang & Li, Ning & Yin, Siyuan & Yi, Weiming, 2019. "Pyrolysis behavior of cellulose in a fixed bed reactor: Residue evolution and effects of parameters on products distribution and bio-oil composition," Energy, Elsevier, vol. 175(C), pages 1067-1074.
    3. Pütün, Ayşe E & Apaydin, Esin & Pütün, Ersan, 2002. "Bio-oil production from pyrolysis and steam pyrolysis of soybean-cake: product yields and composition," Energy, Elsevier, vol. 27(7), pages 703-713.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nugroho, Rusdan Aditya Aji & Alhikami, Akhmad Faruq & Wang, Wei-Cheng, 2023. "Thermal decomposition of polypropylene plastics through vacuum pyrolysis," Energy, Elsevier, vol. 277(C).
    2. Guo, Feiqiang & Qiao, Qixia & Mao, Songbo & Bai, Jiaming & Dong, Kaiming & Shu, Rui & Xu, Liya & Wei, Haixiao & Qian, Lin & Wang, Yunpu, 2023. "A comprehensive study on the pyrolysis behavior of pine sawdust catalyzed by different metal ions under conventional and microwave heating conditions," Energy, Elsevier, vol. 272(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    2. Tripathi, Manoj & Sahu, J.N. & Ganesan, P., 2016. "Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 467-481.
    3. Ansari, Khursheed B. & Kamal, Bushra & Beg, Sidra & Wakeel Khan, Md. Aquib & Khan, Mohd Shariq & Al Mesfer, Mohammed K. & Danish, Mohd., 2021. "Recent developments in investigating reaction chemistry and transport effects in biomass fast pyrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    5. Makarfi Isa, Yusuf & Ganda, Elvis Tinashe, 2018. "Bio-oil as a potential source of petroleum range fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 69-75.
    6. Ji, Li-Qun & Zhang, Chuang & Fang, Jing-Qi, 2017. "Economic analysis of converting of waste agricultural biomass into liquid fuel: A case study on a biofuel plant in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 224-229.
    7. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    8. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    9. Theodore Dickerson & Juan Soria, 2013. "Catalytic Fast Pyrolysis: A Review," Energies, MDPI, vol. 6(1), pages 1-25, January.
    10. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    11. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    12. Liu, Shasha & Wu, Gang & Gao, Yi & Li, Bin & Feng, Yu & Zhou, Jianbin & Hu, Xun & Huang, Yong & Zhang, Shu & Zhang, Hong, 2021. "Understanding the catalytic upgrading of bio-oil from pine pyrolysis over CO2-activated biochar," Renewable Energy, Elsevier, vol. 174(C), pages 538-546.
    13. Sulaiman, F. & Abdullah, N., 2011. "Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches," Energy, Elsevier, vol. 36(5), pages 2352-2359.
    14. Stover, Luke & Caillol, Christian & Piriou, Bruno & Mayer-Laigle, Claire & Rouau, Xavier & Vaïtilingom, Gilles, 2023. "A phenomenological description of biomass powder combustion in internal combustion engines," Energy, Elsevier, vol. 274(C).
    15. Lim, Jeng Shiun & Abdul Manan, Zainuddin & Wan Alwi, Sharifah Rafidah & Hashim, Haslenda, 2012. "A review on utilisation of biomass from rice industry as a source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3084-3094.
    16. Amutio, M. & Lopez, G. & Artetxe, M. & Elordi, G. & Olazar, M. & Bilbao, J., 2012. "Influence of temperature on biomass pyrolysis in a conical spouted bed reactor," Resources, Conservation & Recycling, Elsevier, vol. 59(C), pages 23-31.
    17. Motasemi, F. & Afzal, Muhammad T., 2013. "A review on the microwave-assisted pyrolysis technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 317-330.
    18. Juan Luis Aguirre & Juan Baena & María Teresa Martín & Leonor Nozal & Sergio González & José Luis Manjón & Manuel Peinado, 2020. "Composition, Ageing and Herbicidal Properties of Wood Vinegar Obtained through Fast Biomass Pyrolysis," Energies, MDPI, vol. 13(10), pages 1-17, May.
    19. Wang, Xiaoquan & Morrison, William & Du, Zhenyi & Wan, Yiqin & Lin, Xiangyang & Chen, Paul & Ruan, Roger, 2012. "Biomass temperature profile development and its implications under the microwave-assisted pyrolysis condition," Applied Energy, Elsevier, vol. 99(C), pages 386-392.
    20. Huang, Yu-Fong & Kuan, Wen-Hui & Chang, Chun-Yuan, 2018. "Effects of particle size, pretreatment, and catalysis on microwave pyrolysis of corn stover," Energy, Elsevier, vol. 143(C), pages 696-703.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:160:y:2020:i:c:p:312-322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.