IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v138y2019icp1042-1050.html
   My bibliography  Save this article

Metasilicate-based catalyst prepared from natural diatomaceous earth for biodiesel production

Author

Listed:
  • Chen, Ying-Chen
  • Lin, Dai-Ying
  • Chen, Bing-Hung

Abstract

In this study, natural diatomaceous earth was utilized for the preparation of efficient lithium metasilicate (Li2SiO3) catalyst for biodiesel production via the transesterification of soybean oil and waste cooking oil. Lithium metasilicate was successfully synthesized from the hydrothermal reaction of natural diatomite in LiOH solutions at 150 °C for 24 h and, subsequently, by calcination at 500 °C for 6 h. Both fresh and spent Li2SiO3 catalysts were characterized by using XRD, 29Si NMR, BET, ICP-OES and acid-base titration. The acidity of the soybean oil and waste cooking oil used in this study was 0.54 mg KOH/g oil and 1.67 mg KOH/g oil, respectively. The yields of biodiesel from soybean oil reached ca. 80.3% in 1 h, respectively, in presence of catalyst at 3 wt% of oil used. Generally, more catalyst present would lead to a higher yield of biodiesel. With the mass loading of catalyst-to-oil at 0.05, the activation energy of the catalyzed transesterification using Li2SiO3 catalyst was 61.65 kJ/mol. The durability test of the Li2SiO3 catalysts was conducted in the same system. A high catalytic activity after being reused for 19 times was observed with a yield of biodiesel near ca. 85% after 4 h of the transesterification reaction at 60 °C. The deactivation mechanism of the Li2SiO3 catalyst was mainly attributed to the loss of surface base sites coincident with more Q4 and less Q2 Si atoms in catalyst after reaction, as found by 29Si NMR.

Suggested Citation

  • Chen, Ying-Chen & Lin, Dai-Ying & Chen, Bing-Hung, 2019. "Metasilicate-based catalyst prepared from natural diatomaceous earth for biodiesel production," Renewable Energy, Elsevier, vol. 138(C), pages 1042-1050.
  • Handle: RePEc:eee:renene:v:138:y:2019:i:c:p:1042-1050
    DOI: 10.1016/j.renene.2019.02.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119302083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.02.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaur, Mandeep & Malhotra, Rashi & Ali, Amjad, 2018. "Tungsten supported Ti/SiO2 nanoflowers as reusable heterogeneous catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 116(PA), pages 109-119.
    2. Malhotra, Rashi & Ali, Amjad, 2018. "Lithium-doped ceria supported SBA−15 as mesoporous solid reusable and heterogeneous catalyst for biodiesel production via simultaneous esterification and transesterification of waste cottonseed oil," Renewable Energy, Elsevier, vol. 119(C), pages 32-44.
    3. Roschat, Wuttichai & Siritanon, Theeranun & Yoosuk, Boonyawan & Sudyoadsuk, Taweesak & Promarak, Vinich, 2017. "Rubber seed oil as potential non-edible feedstock for biodiesel production using heterogeneous catalyst in Thailand," Renewable Energy, Elsevier, vol. 101(C), pages 937-944.
    4. Gaurav, N. & Sivasankari, S. & Kiran, GS & Ninawe, A. & Selvin, J., 2017. "Utilization of bioresources for sustainable biofuels: A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 205-214.
    5. Ma, Yingqun & Wang, Qunhui & Sun, Xiaohong & Wu, Chuanfu & Gao, Zhen, 2017. "Kinetics studies of biodiesel production from waste cooking oil using FeCl3-modified resin as heterogeneous catalyst," Renewable Energy, Elsevier, vol. 107(C), pages 522-530.
    6. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    7. Verma, Puneet & Sharma, M.P., 2016. "Review of process parameters for biodiesel production from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1063-1071.
    8. Veljković, Vlada B. & Banković-Ilić, Ivana B. & Stamenković, Olivera S., 2015. "Purification of crude biodiesel obtained by heterogeneously-catalyzed transesterification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 500-516.
    9. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Das, Bikashbindu & Mohanty, Kaustubha, 2019. "A review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud," Renewable Energy, Elsevier, vol. 143(C), pages 1791-1811.
    2. Đặng, Tấn-Hiệp & Nguyễn, Xuân-Hoàn & Chou, Chi-Lin & Chen, Bing-Hung, 2021. "Preparation of cancrinite-type zeolite from diatomaceous earth as transesterification catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 174(C), pages 347-358.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Đặng, Tấn-Hiệp & Nguyễn, Xuân-Hoàn & Chou, Chi-Lin & Chen, Bing-Hung, 2021. "Preparation of cancrinite-type zeolite from diatomaceous earth as transesterification catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 174(C), pages 347-358.
    2. Liu, Ju-Zhao & Cui, Qi & Kang, Yu-Fei & Meng, Yao & Gao, Ming-Zhu & Efferth, Thomas & Fu, Yu-Jie, 2019. "Euonymus maackii Rupr. Seed oil as a new potential non-edible feedstock for biodiesel," Renewable Energy, Elsevier, vol. 133(C), pages 261-267.
    3. di Bitonto, Luigi & Pastore, Carlo, 2019. "Metal hydrated-salts as efficient and reusable catalysts for pre-treating waste cooking oils and animal fats for an effective production of biodiesel," Renewable Energy, Elsevier, vol. 143(C), pages 1193-1200.
    4. Akhabue, Christopher Ehiaguina & Osa-Benedict, Evidence Osayi & Oyedoh, Eghe Amenze & Otoikhian, Shegun Kevin, 2020. "Development of a bio-based bifunctional catalyst for simultaneous esterification and transesterification of neem seed oil: Modeling and optimization studies," Renewable Energy, Elsevier, vol. 152(C), pages 724-735.
    5. Al-Saadi, Ali & Mathan, Bobby & He, Yinghe, 2020. "Esterification and transesterification over SrO–ZnO/Al2O3 as a novel bifunctional catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 158(C), pages 388-399.
    6. Omojola Awogbemi & Daramy Vandi Von Kallon & Emmanuel Idoko Onuh & Victor Sunday Aigbodion, 2021. "An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications," Energies, MDPI, vol. 14(18), pages 1-43, September.
    7. Das, Bikashbindu & Mohanty, Kaustubha, 2019. "A review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud," Renewable Energy, Elsevier, vol. 143(C), pages 1791-1811.
    8. Singh, Himmat & Ali, Amjad, 2023. "Esterification as well as transesterification of waste oil using potassium imbued tungstophosphoric acid supported graphene oxide as heterogeneous catalyst: Optimization and kinetic modeling," Renewable Energy, Elsevier, vol. 207(C), pages 422-435.
    9. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    10. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    11. Ambat, Indu & Srivastava, Varsha & Sillanpää, Mika, 2018. "Recent advancement in biodiesel production methodologies using various feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 356-369.
    12. Teoh, Y.H. & How, H.G. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Alabdulkarem, A., 2019. "Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 136(C), pages 521-534.
    13. Malhotra, Rashi & Ali, Amjad, 2019. "5-Na/ZnO doped mesoporous silica as reusable solid catalyst for biodiesel production via transesterification of virgin cottonseed oil," Renewable Energy, Elsevier, vol. 133(C), pages 606-619.
    14. Shu, Qing & Zou, Wenqiang & He, Jiangfan & Lesmana, Herry & Zhang, Caixia & Zou, Laixi & Wang, Yao, 2019. "Preparation of the F−-SO42-/MWCNTs catalyst and kinetic studies of the biodiesel production via esterification reaction of oleic acid and methanol," Renewable Energy, Elsevier, vol. 135(C), pages 836-845.
    15. Sitka, Andrzej & Szulc, Piotr & Smykowski, Daniel & Jodkowski, Wiesław, 2021. "Application of poultry manure as an energy resource by its gasification in a prototype rotary counterflow gasifier," Renewable Energy, Elsevier, vol. 175(C), pages 422-429.
    16. Solarte-Toro, Juan Camilo & Romero-García, Juan Miguel & Martínez-Patiño, Juan Carlos & Ruiz-Ramos, Encarnación & Castro-Galiano, Eulogio & Cardona-Alzate, Carlos Ariel, 2019. "Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 587-601.
    17. Sergio Paniagua & Alba Prado-Guerra & Ana Isabel Neto & Teresa Nunes & Luís Tarelho & Célia Alves & Luis Fernando Calvo, 2020. "Influence of Varieties and Organic Fertilizer in the Elaboration of a New Poplar-Straw Pellet and Its Emissions in a Domestic Boiler," Energies, MDPI, vol. 13(23), pages 1-17, November.
    18. Dastan Bamwesigye & Petr Kupec & Georges Chekuimo & Jindrich Pavlis & Obed Asamoah & Samuel Antwi Darkwah & Petra Hlaváčková, 2020. "Charcoal and Wood Biomass Utilization in Uganda: The Socioeconomic and Environmental Dynamics and Implications," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    19. Zhang, Jingxin & Hu, Qiang & Qu, Yiyuan & Dai, Yanjun & He, Yiliang & Wang, Chi-Hwa & Tong, Yen Wah, 2020. "Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production," Applied Energy, Elsevier, vol. 257(C).
    20. Ibrahim Yildiz & Hakan Caliskan & Kazutoshi Mori, 2020. "Exergy analysis and nanoparticle assessment of cooking oil biodiesel and standard diesel fueled internal combustion engine," Energy & Environment, , vol. 31(8), pages 1303-1317, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:138:y:2019:i:c:p:1042-1050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.