IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i20p8337-d425754.html
   My bibliography  Save this article

Charcoal and Wood Biomass Utilization in Uganda: The Socioeconomic and Environmental Dynamics and Implications

Author

Listed:
  • Dastan Bamwesigye

    (Department of Forestry and Wood Products Economics and Policy, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, 613 00 Brno, Czech Republic)

  • Petr Kupec

    (Department of Landscape Management, Mendel University in Brno, Zemedelska 3, 613 00 Brno, Czech Republic)

  • Georges Chekuimo

    (Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, Zemedelska 3, 613 00 Brno, Czech Republic)

  • Jindrich Pavlis

    (Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, Zemedelska 3, 613 00 Brno, Czech Republic)

  • Obed Asamoah

    (Department of Bioresources and Forest Science, School of Forest Sciences, University of Eastern Finland, I-80101 Joensuu, Finland)

  • Samuel Antwi Darkwah

    (Department of Territorial Studies, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic)

  • Petra Hlaváčková

    (Department of Forestry and Wood Products Economics and Policy, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, 613 00 Brno, Czech Republic)

Abstract

Charcoal and firewood fuel biomass utilization is thought to be the main cause of deforestation in Uganda. Moreover, the practice of utilizing charcoal and wood fuel in Uganda is said to impact the health of many women and children in the region. The goal of this study was to comprehensively analyze charcoal and wood fuel utilization processes in Uganda and sub-Saharan Africa and the environmental and socioeconomic dynamics and implications. The study equally intended to model out some possible improvements to wood fuel use while conserving natural forests. Both qualitative and qualitative approaches were used to study the charcoal and wood fuel energy situation in Uganda. The study collected field data (sample size: 199) which was subjected to descriptive analysis. The findings show that over 90% of households in Uganda and the sub- Saharan region use firewood and charcoal wood fuel, and that this fuel use creates social and environmental hazards. Our findings are also in agreement with numerous empirical studies showing that firewood and charcoal biomass are among the major causes of deforestation in Uganda and the sub-Saharan region. Ceteris paribus, we propose the adoption of Improved Eco-Stoves (ICE), which not only enable comprehensive combustion but also lessen the quantity of firewood used by more than 60%, together with policy decisions on the government of Uganda, given peoples willingness to take on alternative energy sources such as gas and electricity.

Suggested Citation

  • Dastan Bamwesigye & Petr Kupec & Georges Chekuimo & Jindrich Pavlis & Obed Asamoah & Samuel Antwi Darkwah & Petra Hlaváčková, 2020. "Charcoal and Wood Biomass Utilization in Uganda: The Socioeconomic and Environmental Dynamics and Implications," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8337-:d:425754
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/20/8337/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/20/8337/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gaurav, N. & Sivasankari, S. & Kiran, GS & Ninawe, A. & Selvin, J., 2017. "Utilization of bioresources for sustainable biofuels: A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 205-214.
    2. Melikoglu, Mehmet, 2017. "Vision 2023: Status quo and future of biomass and coal for sustainable energy generation in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 800-808.
    3. Lee, Lisa Yu-Ting, 2013. "Household energy mix in Uganda," Energy Economics, Elsevier, vol. 39(C), pages 252-261.
    4. da Silva, Patrícia Pereira & Cerqueira, Pedro André & Ogbe, Wojolomi, 2018. "Determinants of renewable energy growth in Sub-Saharan Africa: Evidence from panel ARDL," Energy, Elsevier, vol. 156(C), pages 45-54.
    5. Proskurina, Svetlana & Heinimö, Jussi & Schipfer, Fabian & Vakkilainen, Esa, 2017. "Biomass for industrial applications: The role of torrefaction," Renewable Energy, Elsevier, vol. 111(C), pages 265-274.
    6. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dastan Bamwesigye, 2023. "Willingness to Pay for Alternative Energies in Uganda: Energy Needs and Policy Instruments towards Zero Deforestation 2030 and Climate Change," Energies, MDPI, vol. 16(2), pages 1-21, January.
    2. Jacob Otim & Geoffrey Mutumba & Susan Watundu & Geoffrey Mubiinzi & Milly Kaddu, 2022. "The Effects of Gross Domestic Product and Energy Consumption on Carbon Dioxide Emission in Uganda (1986-2018)," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 427-435.
    3. Arkadiusz Dyjakon & Tomasz Noszczyk & Łukasz Sobol & Dominika Misiakiewicz, 2021. "Influence of Torrefaction Temperature and Climatic Chamber Operation Time on Hydrophobic Properties of Agri-Food Biomass Investigated Using the EMC Method," Energies, MDPI, vol. 14(17), pages 1-19, August.
    4. Dastan Bamwesigye & Raymond Chipfakacha & Evans Yeboah, 2022. "Forest and Land Rights at a Time of Deforestation and Climate Change: Land and Resource Use Crisis in Uganda," Land, MDPI, vol. 11(11), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    2. Li, Yi-Jing & Li, Han-Yin & Sun, Shao-Ni & Sun, Run-Cang, 2019. "Evaluating the efficiency of γ-valerolactone/water/acid system on Eucalyptus pretreatment by confocal Raman microscopy and enzymatic hydrolysis for bioethanol production," Renewable Energy, Elsevier, vol. 134(C), pages 228-234.
    3. Sun, Minmin & Zhang, Jianliang & Li, Kejiang & Barati, Mansoor & Liu, Zhibin, 2022. "Co-gasification characteristics of coke blended with hydro-char and pyro-char from bamboo," Energy, Elsevier, vol. 241(C).
    4. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    5. Leonel Jorge Ribeiro Nunes & Radu Godina & João Carlos de Oliveira Matias, 2019. "Technological Innovation in Biomass Energy for the Sustainable Growth of Textile Industry," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    6. Wang, Xuebin & Zhang, Jiaye & Xu, Xinwei & Mikulčić, Hrvoje & Li, Yan & Zhou, Yuegui & Tan, Houzhang, 2020. "Numerical study of biomass Co-firing under Oxy-MILD mode," Renewable Energy, Elsevier, vol. 146(C), pages 2566-2576.
    7. Guta, Dawit Diriba, 2014. "Effect of fuelwood scarcity and socio-economic factors on household bio-based energy use and energy substitution in rural Ethiopia," Energy Policy, Elsevier, vol. 75(C), pages 217-227.
    8. Jeffrey Kouton, 2021. "The impact of renewable energy consumption on inclusive growth: panel data analysis in 44 African countries," Economic Change and Restructuring, Springer, vol. 54(1), pages 145-170, February.
    9. Stephanie L. Martin & Jennifer K. Arney & Lisa M. Mueller & Edward Kumakech & Fiona Walugembe & Emmanuel Mugisha, 2013. "Using Formative Research to Design a Behavior Change Strategy to Increase the Use of Improved Cookstoves in Peri-Urban Kampala, Uganda," IJERPH, MDPI, vol. 10(12), pages 1-19, December.
    10. Ozcan, Mustafa, 2018. "The role of renewables in increasing Turkey's self-sufficiency in electrical energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2629-2639.
    11. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Umut Uzar, 2022. "The connection between freedom of the press and environmental quality: An investigation on emerging market countries," Natural Resources Forum, Blackwell Publishing, vol. 46(1), pages 21-38, February.
    13. Damien Kunjal, 2022. "Evaluating the Liquidity Response of South African Exchange-Traded Funds to Country Risk Effects," Economies, MDPI, vol. 10(6), pages 1-20, June.
    14. Tinta, Abdoulganiour Almame, 2023. "Energy substitution in Africa: Cross-regional differentiation effects," Energy, Elsevier, vol. 263(PA).
    15. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    16. Zheng, Shuhong & Yang, Juan & Yu, Shiwei, 2021. "How renewable energy technological innovation promotes renewable power generation: Evidence from China's provincial panel data," Renewable Energy, Elsevier, vol. 177(C), pages 1394-1407.
    17. Zhang, Junyi & Teng, Fei & Zhou, Shaojie, 2020. "The structural changes and determinants of household energy choices and energy consumption in urban China: Addressing the role of building type," Energy Policy, Elsevier, vol. 139(C).
    18. Sitka, Andrzej & Szulc, Piotr & Smykowski, Daniel & Jodkowski, Wiesław, 2021. "Application of poultry manure as an energy resource by its gasification in a prototype rotary counterflow gasifier," Renewable Energy, Elsevier, vol. 175(C), pages 422-429.
    19. Emilia Neag & Zamfira Stupar & S. Andrada Maicaneanu & Cecilia Roman, 2023. "Advances in Biodiesel Production from Microalgae," Energies, MDPI, vol. 16(3), pages 1-18, January.
    20. Struhs, Ethan & Mirkouei, Amin & You, Yaqi & Mohajeri, Amir, 2020. "Techno-economic and environmental assessments for nutrient-rich biochar production from cattle manure: A case study in Idaho, USA," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8337-:d:425754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.