IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp2566-2576.html
   My bibliography  Save this article

Numerical study of biomass Co-firing under Oxy-MILD mode

Author

Listed:
  • Wang, Xuebin
  • Zhang, Jiaye
  • Xu, Xinwei
  • Mikulčić, Hrvoje
  • Li, Yan
  • Zhou, Yuegui
  • Tan, Houzhang

Abstract

Oxy-MILD (Oxygen Moderate and Intense Low-Oxygen Dilution) combustion is one of the most promising technologies for the mitigation of CO2 emissions from coal-fired furnaces, benefiting from its good performance in flame-temperature controlling and NOx reduction. Under oxy-MILD mode, the combustion or co-firing of biomass (CO2-neutral) can achieve “negative CO2 emissions”. In this paper, oxy-MILD biomass co-firing is numerically studied by CFD modeling for the IFRF furnace NO.1, where Guasare coal and Olive waste are co-fired under air-MILD and oxy-MILD conditions, respectively. The effects of biomass co-firing ratio (0–30%, energy basis) and atmosphere on the temperature and heat flux distribution, and NOx emissions are discussed. The modeling results show that under MILD combustion mode, both oxy-combustion and biomass co-firing can generate a more moderate temperature distribution and lower NOx emissions than air-combustion and coal combustion, respectively. When biomass co-firing ratio increases from 0% to 30%, under oxy-MILD combustion mode, the peak temperature linearly decreases by 28 K and the NOx emissions decrease by 141 ppm; while under air-MILD combustion mode, the peak temperature increases by 15 K and the NOx emissions decrease by only 73 ppm. This modeling work suggests that oxy-MILD biomass co-firing is a more promising technology to achieve “negative CO2 emissions” in coal combustion, with lower furnace temperatures as well as NOx emissions.

Suggested Citation

  • Wang, Xuebin & Zhang, Jiaye & Xu, Xinwei & Mikulčić, Hrvoje & Li, Yan & Zhou, Yuegui & Tan, Houzhang, 2020. "Numerical study of biomass Co-firing under Oxy-MILD mode," Renewable Energy, Elsevier, vol. 146(C), pages 2566-2576.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:2566-2576
    DOI: 10.1016/j.renene.2019.08.108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119312959
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.08.108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garcia-Maraver, Angela & Perez-Jimenez, Jose A. & Serrano-Bernardo, Francisco & Zamorano, Montserrat, 2015. "Determination and comparison of combustion kinetics parameters of agricultural biomass from olive trees," Renewable Energy, Elsevier, vol. 83(C), pages 897-904.
    2. Mladenović, Milica & Paprika, Milijana & Marinković, Ana, 2018. "Denitrification techniques for biomass combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3350-3364.
    3. Holtmeyer, Melissa L. & Kumfer, Benjamin M. & Axelbaum, Richard L., 2012. "Effects of biomass particle size during cofiring under air-fired and oxyfuel conditions," Applied Energy, Elsevier, vol. 93(C), pages 606-613.
    4. Song, Xiaoxu & Yang, Yang & Zhang, Meng & Zhang, Ke & Wang, Donghai, 2018. "Ultrasonic pelleting of torrefied lignocellulosic biomass for bioenergy production," Renewable Energy, Elsevier, vol. 129(PA), pages 56-62.
    5. Dong, Changqing & Yang, Yongping & Yang, Rui & Zhang, Junjiao, 2010. "Numerical modeling of the gasification based biomass co-firing in a 600Â MW pulverized coal boiler," Applied Energy, Elsevier, vol. 87(9), pages 2834-2838, September.
    6. Mardani, A. & Fazlollahi Ghomshi, A., 2016. "Numerical study of oxy-fuel MILD (moderate or intense low-oxygen dilution combustion) combustion for CH4–H2 fuel," Energy, Elsevier, vol. 99(C), pages 136-151.
    7. Proskurina, Svetlana & Heinimö, Jussi & Schipfer, Fabian & Vakkilainen, Esa, 2017. "Biomass for industrial applications: The role of torrefaction," Renewable Energy, Elsevier, vol. 111(C), pages 265-274.
    8. Liu, Xiang & Chen, Meiqian & Wei, Yuanhang, 2016. "Assessment on oxygen enriched air co-combustion performance of biomass/bituminous coal," Renewable Energy, Elsevier, vol. 92(C), pages 428-436.
    9. Shim, Sung Hoon & Jeong, Sang Hyun & Lee, Sang-Sup, 2014. "Reduction in nitrogen oxides emissions by MILD combustion of dried sludge," Renewable Energy, Elsevier, vol. 65(C), pages 29-35.
    10. Hu, Fan & Li, Pengfei & Guo, Junjun & Liu, Zhaohui & Wang, Lin & Mi, Jianchun & Dally, Bassam & Zheng, Chuguang, 2018. "Global reaction mechanisms for MILD oxy-combustion of methane," Energy, Elsevier, vol. 147(C), pages 839-857.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Fan & Xiong, Biao & Liu, Xuhui & Huang, Xiaohong & Li, Yu & Liu, Zhaohui, 2023. "Optimized TGA-based experimental method for studying intrinsic kinetics of coal char oxidation under moderate or intense low-oxygen dilution oxy-fuel conditions," Energy, Elsevier, vol. 265(C).
    2. Hu, Fan & Li, Pengfei & Zhang, Tai & Zu, Daohua & Cheng, Pengfei & Liu, Yaowei & Mi, Jianchun & Liu, Zhaohui, 2022. "Experimental investigation on co-firing residual char and pulverized coal under MILD combustion using low-temperature preheating air," Energy, Elsevier, vol. 244(PA).
    3. Zhang, Jiaye & Chen, Chongming & Zhou, Ao & Rahman, Zia ur & Wang, Xuebin & Stojiljković, Dragoslava & Manić, Nebojsa & Vujanović, Milan & Tan, Houzhang, 2022. "Morphology of char particles from coal pyrolysis in a pressurized entrained flow reactor: Effects of pressure and atmosphere," Energy, Elsevier, vol. 238(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Ye & Zhou, Xiong & Ji, Xuanyu & Bai, Jisong & Yuan, Liang, 2019. "Applying moderate or intense low-oxygen dilution combustion to a co-axial-jet I-shaped recuperative radiant tube for further performance enhancement," Energy, Elsevier, vol. 171(C), pages 149-160.
    2. Jozaalizadeh, Toomaj & Toghraie, Davood, 2019. "Numerical investigation behavior of reacting flow for flameless oxidation technology of MILD combustion: Effect of fluctuating temperature of inlet co-flow," Energy, Elsevier, vol. 178(C), pages 530-537.
    3. Bao, Yu & Yu, Qingbo & Xie, Huaqing & Qin, Qin & Zhao, Yu, 2023. "Effect of H2 and CO in syngas on oxy-MILD combustion," Applied Energy, Elsevier, vol. 352(C).
    4. Liu, Zhengang & Quek, Augustine & Parshetti, Ganesh & Jain, Akshay & Srinivasan, M.P. & Hoekman, S. Kent & Balasubramanian, Rajasekhar, 2013. "A study of nitrogen conversion and polycyclic aromatic hydrocarbon (PAH) emissions during hydrochar–lignite co-pyrolysis," Applied Energy, Elsevier, vol. 108(C), pages 74-81.
    5. Mikulčić, Hrvoje & von Berg, Eberhard & Vujanović, Milan & Wang, Xuebin & Tan, Houzhang & Duić, Neven, 2016. "Numerical evaluation of different pulverized coal and solid recovered fuel co-firing modes inside a large-scale cement calciner," Applied Energy, Elsevier, vol. 184(C), pages 1292-1305.
    6. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    7. Li, Yi-Jing & Li, Han-Yin & Sun, Shao-Ni & Sun, Run-Cang, 2019. "Evaluating the efficiency of γ-valerolactone/water/acid system on Eucalyptus pretreatment by confocal Raman microscopy and enzymatic hydrolysis for bioethanol production," Renewable Energy, Elsevier, vol. 134(C), pages 228-234.
    8. Małgorzata Wzorek & Robert Junga & Ersel Yilmaz & Bohdan Bozhenko, 2021. "Thermal Decomposition of Olive-Mill Byproducts: A TG-FTIR Approach," Energies, MDPI, vol. 14(14), pages 1-16, July.
    9. Sun, Minmin & Zhang, Jianliang & Li, Kejiang & Barati, Mansoor & Liu, Zhibin, 2022. "Co-gasification characteristics of coke blended with hydro-char and pyro-char from bamboo," Energy, Elsevier, vol. 241(C).
    10. He, Yizhuo & Zou, Chun & Song, Yu & Luo, Jianghui & Jia, Huiqiao & Chen, Wuzhong & Zheng, Junmei & Zheng, Chuguang, 2017. "Comparison of the characteristics and mechanism of CO formation in O2/N2, O2/CO2 and O2/H2O atmospheres," Energy, Elsevier, vol. 141(C), pages 1429-1438.
    11. Leonel Jorge Ribeiro Nunes & Radu Godina & João Carlos de Oliveira Matias, 2019. "Technological Innovation in Biomass Energy for the Sustainable Growth of Textile Industry," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    12. Li, Jun & Brzdekiewicz, Artur & Yang, Weihong & Blasiak, Wlodzimierz, 2012. "Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching," Applied Energy, Elsevier, vol. 99(C), pages 344-354.
    13. Xu, Cheng & Xin, Tuantuan & Xu, Gang & Li, Xiaosa & Liu, Wenyi & Yang, Yongping, 2017. "Thermodynamic analysis of a novel solar-hybrid system for low-rank coal upgrading and power generation," Energy, Elsevier, vol. 141(C), pages 1737-1749.
    14. Álvarez, L. & Gharebaghi, M. & Jones, J.M. & Pourkashanian, M. & Williams, A. & Riaza, J. & Pevida, C. & Pis, J.J. & Rubiera, F., 2013. "CFD modeling of oxy-coal combustion: Prediction of burnout, volatile and NO precursors release," Applied Energy, Elsevier, vol. 104(C), pages 653-665.
    15. Haiyang Wang & Jianliang Zhang & Guangwei Wang & Di Zhao & Jian Guo & Tengfei Song, 2017. "Research on the Combustion Characteristics and Kinetic Analysis of the Recycling Dust for a COREX Furnace," Energies, MDPI, vol. 10(2), pages 1-12, February.
    16. Almendros, A.I. & Blázquez, G. & Ronda, A. & Martín-Lara, M.A. & Calero, M., 2017. "Study of the catalytic effect of nickel in the thermal decomposition of olive tree pruning via thermogravimetric analysis," Renewable Energy, Elsevier, vol. 103(C), pages 825-835.
    17. Santos Dalólio, Felipe & da Silva, Jadir Nogueira & Carneiro de Oliveira, Angélica Cássia & Ferreira Tinôco, Ilda de Fátima & Christiam Barbosa, Rúben & Resende, Michael de Oliveira & Teixeira Albino,, 2017. "Poultry litter as biomass energy: A review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 941-949.
    18. Dastan Bamwesigye & Petr Kupec & Georges Chekuimo & Jindrich Pavlis & Obed Asamoah & Samuel Antwi Darkwah & Petra Hlaváčková, 2020. "Charcoal and Wood Biomass Utilization in Uganda: The Socioeconomic and Environmental Dynamics and Implications," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    19. Francisco Rodríguez & Yuby Cruz & Idoia Estiati & Juan F. Saldarriaga, 2019. "Kinetic Study of Corn and Sugarcane Waste Oxidative Pyrolysis," Energies, MDPI, vol. 12(23), pages 1-14, December.
    20. Xuyang Cui & Junhong Yang & Xinyu Shi & Wanning Lei & Tao Huang & Chao Bai, 2019. "Experimental Investigation on the Energy Consumption, Physical, and Thermal Properties of a Novel Pellet Fuel Made from Wood Residues with Microalgae as a Binder," Energies, MDPI, vol. 12(18), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:2566-2576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.