IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v55y2013icp357-365.html
   My bibliography  Save this article

Microwave-assisted pyrolysis of palm kernel shell: Optimization using response surface methodology (RSM)

Author

Listed:
  • Jamaluddin, Muhammad 'Azim
  • Ismail, Khudzir
  • Mohd Ishak, Mohd Azlan
  • Ab Ghani, Zaidi
  • Abdullah, Mohd Fauzi
  • Safian, Muhammad Taqi-uddeen
  • Idris, Siti Shawalliah
  • Tahiruddin, Shawaluddin
  • Mohammed Yunus, Mohammed Faisal
  • Mohd Hakimi, Noor Irma Nazashida

Abstract

In this study, response surface methodology (RSM) based on central composite rotatable design (CCRD) was applied to determine the optimum condition for pyrolysis of palm kernel shell (PKS) using microwave-assisted pyrolysis system. Three operating variables, namely reaction time (min), sample mass (g) and nitrogen gas flow rate (mL/min) with a total of 20 individual experiments were conducted to optimize the combination effects of the variables. RSM based upon CCRD can be applied to correlate the experimental microwave-assisted pyrolysis results, with regression coefficients of 96.6, 95.0, 96.4 and 99.2 for the calorific value, fixed carbon content, volatile matters content and yield percentage, respectively. This proved that the RSM based on CCRD is efficiently applicable for the pyrolysis study using microwave-assisted pyrolysis system. The predicted optimum conditions for the pyrolysis process was at 31.5 min for reaction time, 30 g for sample mass and 100 mL/min for nitrogen gas flow rate, resulting in calorific value, fixed carbon content, volatile matters content and yield percentage of 29.9 MJ/kg, 59.8 wt%, 36.4 wt% and 40.0 wt%, respectively. Thus, maximum production of PKS char, with low volatile matters content and high calorific value and fixed carbon content via microwave-assisted pyrolysis system can be optimized using RSM.

Suggested Citation

  • Jamaluddin, Muhammad 'Azim & Ismail, Khudzir & Mohd Ishak, Mohd Azlan & Ab Ghani, Zaidi & Abdullah, Mohd Fauzi & Safian, Muhammad Taqi-uddeen & Idris, Siti Shawalliah & Tahiruddin, Shawaluddin & Moham, 2013. "Microwave-assisted pyrolysis of palm kernel shell: Optimization using response surface methodology (RSM)," Renewable Energy, Elsevier, vol. 55(C), pages 357-365.
  • Handle: RePEc:eee:renene:v:55:y:2013:i:c:p:357-365
    DOI: 10.1016/j.renene.2012.12.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113000049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.12.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gani, Asri & Naruse, Ichiro, 2007. "Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass," Renewable Energy, Elsevier, vol. 32(4), pages 649-661.
    2. Van de Velden, Manon & Baeyens, Jan & Brems, Anke & Janssens, Bart & Dewil, Raf, 2010. "Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction," Renewable Energy, Elsevier, vol. 35(1), pages 232-242.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mushtaq, Faisal & Mat, Ramli & Ani, Farid Nasir, 2014. "A review on microwave assisted pyrolysis of coal and biomass for fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 555-574.
    2. Mutsengerere, S. & Chihobo, C.H. & Musademba, D. & Nhapi, I., 2019. "A review of operating parameters affecting bio-oil yield in microwave pyrolysis of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 328-336.
    3. Kumar N, Sasi & Grekov, Denys & Pré, Pascaline & Alappat, Babu J., 2020. "Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    4. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    5. Yang, Yadong & Shahbeik, Hossein & Shafizadeh, Alireza & Masoudnia, Nima & Rafiee, Shahin & Zhang, Yijia & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2022. "Biomass microwave pyrolysis characterization by machine learning for sustainable rural biorefineries," Renewable Energy, Elsevier, vol. 201(P2), pages 70-86.
    6. Rashidi, Saman & Bovand, Masoud & Rahbar, Nader & Esfahani, Javad Abolfazli, 2018. "Steps optimization and productivity enhancement in a nanofluid cascade solar still," Renewable Energy, Elsevier, vol. 118(C), pages 536-545.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nourelhouda Boukaous & Lokmane Abdelouahed & Mustapha Chikhi & Abdeslam-Hassen Meniai & Chetna Mohabeer & Taouk Bechara, 2018. "Combustion of Flax Shives, Beech Wood, Pure Woody Pseudo-Components and Their Chars: A Thermal and Kinetic Study," Energies, MDPI, vol. 11(8), pages 1-16, August.
    2. Cheng Li & Xiaochen Yue & Jun Yang & Yafeng Yang & Haiping Gu & Wanxi Peng, 2019. "Catalytic Fast Pyrolysis of Forestry Wood Waste for Bio-Energy Recovery Using Nano-Catalysts," Energies, MDPI, vol. 12(20), pages 1-12, October.
    3. Ábrego, J. & Atienza-Martínez, M. & Plou, F. & Arauzo, J., 2019. "Heat requirement for fixed bed pyrolysis of beechwood chips," Energy, Elsevier, vol. 178(C), pages 145-157.
    4. López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
    5. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    6. Mouna Gmar & Hassine Bouafif & Besma Bouslimi & Flavia L. Braghiroli & Ahmed Koubaa, 2022. "Pyrolysis of Chromated Copper Arsenate-Treated Wood: Investigation of Temperature, Granulometry, Biochar Yield, and Metal Pathways," Energies, MDPI, vol. 15(14), pages 1-15, July.
    7. Amutio, M. & Lopez, G. & Artetxe, M. & Elordi, G. & Olazar, M. & Bilbao, J., 2012. "Influence of temperature on biomass pyrolysis in a conical spouted bed reactor," Resources, Conservation & Recycling, Elsevier, vol. 59(C), pages 23-31.
    8. Yimin Deng & Renaud Ansart & Jan Baeyens & Huili Zhang, 2019. "Flue Gas Desulphurization in Circulating Fluidized Beds," Energies, MDPI, vol. 12(20), pages 1-19, October.
    9. Juan Luis Aguirre & Juan Baena & María Teresa Martín & Leonor Nozal & Sergio González & José Luis Manjón & Manuel Peinado, 2020. "Composition, Ageing and Herbicidal Properties of Wood Vinegar Obtained through Fast Biomass Pyrolysis," Energies, MDPI, vol. 13(10), pages 1-17, May.
    10. Liu, Hui & Liu, Jingyong & Huang, Hongyi & Evrendilek, Fatih & Wen, Shaoting & Li, Weixin, 2021. "Optimizing bioenergy and by-product outputs from durian shell pyrolysis," Renewable Energy, Elsevier, vol. 164(C), pages 407-418.
    11. Lacrimioara Senila & Ioan Tenu & Petru Carlescu & Daniela Alexandra Scurtu & Eniko Kovacs & Marin Senila & Oana Cadar & Marius Roman & Diana Elena Dumitras & Cecilia Roman, 2022. "Characterization of Biobriquettes Produced from Vineyard Wastes as a Solid Biofuel Resource," Agriculture, MDPI, vol. 12(3), pages 1-13, February.
    12. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
    13. Collazo, Joaquín & Pazó, José Antonio & Granada, Enrique & Saavedra, Ángeles & Eguía, Pablo, 2012. "Determination of the specific heat of biomass materials and the combustion energy of coke by DSC analysis," Energy, Elsevier, vol. 45(1), pages 746-752.
    14. Xing, Jiangkuan & Wang, Haiou & Luo, Kun & Wang, Shuai & Bai, Yun & Fan, Jianren, 2019. "Predictive single-step kinetic model of biomass devolatilization for CFD applications: A comparison study of empirical correlations (EC), artificial neural networks (ANN) and random forest (RF)," Renewable Energy, Elsevier, vol. 136(C), pages 104-114.
    15. Gojiya, Anil & Deb, Dipankar & Iyer, Kannan K.R., 2019. "Feasibility study of power generation from agricultural residue in comparison with soil incorporation of residue," Renewable Energy, Elsevier, vol. 134(C), pages 416-425.
    16. Ortiz, Leandro Rodriguez & Torres, Erick & Zalazar, Daniela & Zhang, Huili & Rodriguez, Rosa & Mazza, Germán, 2020. "Influence of pyrolysis temperature and bio-waste composition on biochar characteristics," Renewable Energy, Elsevier, vol. 155(C), pages 837-847.
    17. Lupa, Christopher J. & Wylie, Steve R. & Shaw, Andrew & Al-Shamma'a, Ahmed & Sweetman, Andrew J. & Herbert, Ben M.J., 2013. "Gas evolution and syngas heating value from advanced thermal treatment of waste using microwave-induced plasma," Renewable Energy, Elsevier, vol. 50(C), pages 1065-1072.
    18. Xue, Junjie & Chellappa, Thiago & Ceylan, Selim & Goldfarb, Jillian L., 2018. "Enhancing biomass + coal Co-firing scenarios via biomass torrefaction and carbonization: Case study of avocado pit biomass and Illinois No. 6 coal," Renewable Energy, Elsevier, vol. 122(C), pages 152-162.
    19. Smichi, Neila & Messaoudi, Yosra & Ksouri, Riadh & Abdelly, Chedly & Gargouri, Mohamed, 2014. "Pretreatment and enzymatic saccharification of new phytoresource for bioethanol production from halophyte species," Renewable Energy, Elsevier, vol. 63(C), pages 544-549.
    20. Brems, Anke & Baeyens, Jan & Beerlandt, Johan & Dewil, Raf, 2011. "Thermogravimetric pyrolysis of waste polyethylene-terephthalate and polystyrene: A critical assessment of kinetics modelling," Resources, Conservation & Recycling, Elsevier, vol. 55(8), pages 772-781.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:55:y:2013:i:c:p:357-365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.