IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v12y2023i7p85-d1198985.html
   My bibliography  Save this article

Co-Hydrothermal Carbonization of Grass and Olive Stone as a Means to Lower Water Input to HTC

Author

Listed:
  • Rocío García-Morato

    (Applied Physics Department, University of Extremadura, Avd. Elvas, s/n, 06006 Badajoz, Spain)

  • Silvia Román

    (Applied Physics Department, University of Extremadura, Avd. Elvas, s/n, 06006 Badajoz, Spain)

  • Beatriz Ledesma

    (Applied Physics Department, University of Extremadura, Avd. Elvas, s/n, 06006 Badajoz, Spain)

  • Charles Coronella

    (Chemical and Mineral Engineering, University of Nevada, 1664 N Virginia St, Reno, NV 89557, USA)

Abstract

One drawback of biomass hydrothermal treatment (HTC) is the need of a water supply, which is especially important in the case of lignocellulosic biomass. This study has investigated the synergy resulting from co-HTC of two residual biomass materials that significantly differ in their physico-chemical compositions: (a) olive stone, OS, a hard and high-quality biomass, with low N content, whose potential to give a high heating value briquette by HTC has been proven, and (b) fresh grass pruning, GP, as it is gathered from gardens, with a high water content, moderate N fraction, and low calorific value. The work specifically focuses on the water saving that can be attained when the liquid product produced by one of them (grass, with 80% of moisture) can supply part of the water needed by the other (olive stone) when both are subjected to HTC simultaneously. It was found that, when instead of water, an additional amount of fresh GP is added (in particular 40 out of 110 g of water was provided by 54 g of GP), and a more basic processing water is obtained (pH of co-HTC increased by 40%, in relation of single OS processes). This in turn did not have a remarkable effect on OS final SY at any of the two temperatures studied (200 and 220 °C), not on the C densification. Other features such as N content of resulting OS hydrochars showed a rise in the case of hybrid processes, from 0.2% to 3.3%. Other features that were affected on OS HTC products because of the presence of the GP in co-HTC were the HC surface structure, hydrophobicity, and the presence of surface functionalities and their thermal stability towards pyrolysis; processing water also showed changes on mineral content when both biomasses there blended. Proving that a biomass like OS can be hydrothermally treated by a hybrid process involving less water, without being detrimental in terms of final SY and energy densification, can open a field of research aimed to make HTC processes more efficient in terms of hydric balance.

Suggested Citation

  • Rocío García-Morato & Silvia Román & Beatriz Ledesma & Charles Coronella, 2023. "Co-Hydrothermal Carbonization of Grass and Olive Stone as a Means to Lower Water Input to HTC," Resources, MDPI, vol. 12(7), pages 1-14, July.
  • Handle: RePEc:gam:jresou:v:12:y:2023:i:7:p:85-:d:1198985
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/12/7/85/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/12/7/85/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gani, Asri & Naruse, Ichiro, 2007. "Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass," Renewable Energy, Elsevier, vol. 32(4), pages 649-661.
    2. Román, S. & Ledesma, B. & Álvarez, A. & Coronella, C. & Qaramaleki, S.V., 2020. "Suitability of hydrothermal carbonization to convert water hyacinth to added-value products," Renewable Energy, Elsevier, vol. 146(C), pages 1649-1658.
    3. Zhao, Peitao & Lin, Chuanjin & Li, Yilong & Zhang, Jing & Huang, Neng & Cui, Xin & Liu, Fang & Guo, Qingjie, 2022. "Combustion and slagging characteristics of hydrochar derived from the co-hydrothermal carbonization of PVC and alkali coal," Energy, Elsevier, vol. 244(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng Li & Xiaochen Yue & Jun Yang & Yafeng Yang & Haiping Gu & Wanxi Peng, 2019. "Catalytic Fast Pyrolysis of Forestry Wood Waste for Bio-Energy Recovery Using Nano-Catalysts," Energies, MDPI, vol. 12(20), pages 1-12, October.
    2. Śliz, Maciej & Wilk, Małgorzata, 2020. "A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow," Renewable Energy, Elsevier, vol. 156(C), pages 942-950.
    3. Lacrimioara Senila & Ioan Tenu & Petru Carlescu & Daniela Alexandra Scurtu & Eniko Kovacs & Marin Senila & Oana Cadar & Marius Roman & Diana Elena Dumitras & Cecilia Roman, 2022. "Characterization of Biobriquettes Produced from Vineyard Wastes as a Solid Biofuel Resource," Agriculture, MDPI, vol. 12(3), pages 1-13, February.
    4. Saaida Khlifi & Marzouk Lajili & Saoussen Belghith & Salah Mezlini & Fouzi Tabet & Mejdi Jeguirim, 2020. "Briquettes Production from Olive Mill Waste under Optimal Temperature and Pressure Conditions: Physico-Chemical and Mechanical Characterizations," Energies, MDPI, vol. 13(5), pages 1-14, March.
    5. Zhang, Ziyin & Pang, Shusheng, 2019. "Experimental investigation of tar formation and producer gas composition in biomass steam gasification in a 100 kW dual fluidised bed gasifier," Renewable Energy, Elsevier, vol. 132(C), pages 416-424.
    6. Shulun Han & Li Bai & Mingshu Chi & Xiuling Xu & Zhao Chen & Kecheng Yu, 2022. "Conversion of Waste Corn Straw to Value-Added Fuel via Hydrothermal Carbonization after Acid Washing," Energies, MDPI, vol. 15(5), pages 1-14, March.
    7. Aaron E. Brown & Jessica M. M. Adams & Oliver R. Grasham & Miller Alonso Camargo-Valero & Andrew B. Ross, 2020. "An Assessment of Different Integration Strategies of Hydrothermal Carbonisation and Anaerobic Digestion of Water Hyacinth," Energies, MDPI, vol. 13(22), pages 1-26, November.
    8. Chen, Yunan & Yi, Lei & Yin, Jiarong & Jin, Hui & Guo, Liejin, 2022. "Sewage sludge gasification in supercritical water with fluidized bed reactor: Reaction and product characteristics," Energy, Elsevier, vol. 239(PB).
    9. Chen, Fuxin & Hou, Binbin & Chen, Suying & Zhang, Huikuan & Gong, Pin & Zhou, Anning, 2017. "Biochemicals distribution and the collaborative pyrolysis study from three main components of Helianthus annuus stems based on PY-GC/MS," Renewable Energy, Elsevier, vol. 114(PB), pages 960-967.
    10. Gupta, Ankita & Mahajani, Sanjay, 2020. "Kinetic studies in pyrolysis of garden waste in the context of downdraft gasification: Experiments and modeling," Energy, Elsevier, vol. 208(C).
    11. Yusuf, Abdulfatah Abdu & Inambao, Freddie L., 2020. "Characterization of Ugandan biomass wastes as the potential candidates towards bioenergy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    12. Liu, Xiaodan & Feng, Xuping & He, Yong, 2019. "Rapid discrimination of the categories of the biomass pellets using laser-induced breakdown spectroscopy," Renewable Energy, Elsevier, vol. 143(C), pages 176-182.
    13. Ramprakash, Balasubramani & Lindblad, Peter & Eaton-Rye, Julian J. & Incharoensakdi, Aran, 2022. "Current strategies and future perspectives in biological hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Chouchene, Ajmia & Jeguirim, Mejdi & Khiari, Basma & Zagrouba, Fathi & Trouvé, Gwénaëlle, 2010. "Thermal degradation of olive solid waste: Influence of particle size and oxygen concentration," Resources, Conservation & Recycling, Elsevier, vol. 54(5), pages 271-277.
    15. Furtado Júnior, Juarez Corrêa & Palacio, José Carlos Escobar & Leme, Rafael Coradi & Lora, Electo Eduardo Silva & da Costa, José Eduardo Loureiro & Reyes, Arnaldo Martín Martínez & del Olmo, Oscar Alm, 2020. "Biorefineries productive alternatives optimization in the brazilian sugar and alcohol industry," Applied Energy, Elsevier, vol. 259(C).
    16. Richard Ahorsu & Francesc Medina & Magda Constantí, 2018. "Significance and Challenges of Biomass as a Suitable Feedstock for Bioenergy and Biochemical Production: A Review," Energies, MDPI, vol. 11(12), pages 1-19, December.
    17. Cherubini, Francesco & Ulgiati, Sergio, 2010. "Crop residues as raw materials for biorefinery systems - A LCA case study," Applied Energy, Elsevier, vol. 87(1), pages 47-57, January.
    18. Leng, Erwei & He, Ben & Chen, Jingwei & Liao, Gaoliang & Ma, Yinjie & Zhang, Feng & Liu, Shuai & E, Jiaqiang, 2021. "Prediction of three-phase product distribution and bio-oil heating value of biomass fast pyrolysis based on machine learning," Energy, Elsevier, vol. 236(C).
    19. Tripathi, Manoj & Sahu, J.N. & Ganesan, P., 2016. "Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 467-481.
    20. Antonios Nazos & Panagiotis Grammelis & Elias Sakellis & Dimitrios Sidiras, 2020. "Acid-Catalyzed Wet Torrefaction for Enhancing the Heating Value of Barley Straw," Energies, MDPI, vol. 13(7), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:12:y:2023:i:7:p:85-:d:1198985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.