IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v201y2022ip1p305-313.html
   My bibliography  Save this article

Evaluation of the potential of pelletized enzyme-treated Ginkgo leaf residues for use as a solid fuel

Author

Listed:
  • Guo, Ying
  • Yu, Yan
  • Wan, Zhangmin
  • Sokhansanj, Shahabaddine
  • El-Kassaby, Yousry A.
  • Wang, Guibin

Abstract

Converting biowaste to solid fuel pellets is an efficient and environmental-friendly way for forestry residues utilization. Here, we investigated the effect of enzyme treatment on the quality and combustion characteristics of Ginkgo leaf residues (GLRs) pellets. The results indicated that compared with the untreated control sample (T1), the GLRs treated with 100 (T2) and 200 mg/g (T3) concentrations of cellulase enzyme were coarser and cracked with enhanced specific surface area. GLRs heating value increased from 17.8 to 18.9 and 19.3 MJ/kg for T2 and T3, respectively. Increase in pellet durability (from 73.4 to 80.8%) and hardness (from 0.8 to 1.3) as compared to T1 pellets. The energy consumption of all pellets kept in a low range of 15.1–16.1 J. The kinetics analysis found that the activation energy of T3 pellet decreased from 45.5 to 34.2 kJ/mol in the first order reaction model and from 95.8 to 77.8 kJ/mol in the 3D diffusion model compared to T1. Further, molecular dynamics simulation suggested the enzyme treatment was effective in disorganizing the crystalline cellulose chains, which not only improved the extraction efficiency of bioactive components in Ginkgo leaves, but also promoted the acquisition of high-quality GLRs for manufacturing solid fuel pellets.

Suggested Citation

  • Guo, Ying & Yu, Yan & Wan, Zhangmin & Sokhansanj, Shahabaddine & El-Kassaby, Yousry A. & Wang, Guibin, 2022. "Evaluation of the potential of pelletized enzyme-treated Ginkgo leaf residues for use as a solid fuel," Renewable Energy, Elsevier, vol. 201(P1), pages 305-313.
  • Handle: RePEc:eee:renene:v:201:y:2022:i:p1:p:305-313
    DOI: 10.1016/j.renene.2022.10.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122015415
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.10.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, R. & Strezov, V. & Weldekidan, H. & He, J. & Singh, S. & Kan, T. & Dastjerdi, B., 2020. "Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    2. Huang, Neng & Zhao, Peitao & Ghosh, Sudip & Fedyukhin, Alexander, 2019. "Co-hydrothermal carbonization of polyvinyl chloride and moist biomass to remove chlorine and inorganics for clean fuel production," Applied Energy, Elsevier, vol. 240(C), pages 882-892.
    3. Agus Haryanto & Wahyu Hidayat & Udin Hasanudin & Dewi Agustina Iryani & Sangdo Kim & Sihyun Lee & Jiho Yoo, 2021. "Valorization of Indonesian Wood Wastes through Pyrolysis: A Review," Energies, MDPI, vol. 14(5), pages 1-25, March.
    4. Bajwa, Dilpreet S. & Peterson, Tyler & Sharma, Neeta & Shojaeiarani, Jamileh & Bajwa, Sreekala G., 2018. "A review of densified solid biomass for energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 296-305.
    5. Gani, Asri & Naruse, Ichiro, 2007. "Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass," Renewable Energy, Elsevier, vol. 32(4), pages 649-661.
    6. Yu, Yan & Wu, Jie & Ren, Xueyong & Lau, Anthony & Rezaei, Hamid & Takada, Masatsugu & Bi, Xiaotao & Sokhansanj, Shahabbadine, 2022. "Steam explosion of lignocellulosic biomass for multiple advanced bioenergy processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Krzysztof Mudryk & Marcin Jewiarz & Marek Wróbel & Marcin Niemiec & Arkadiusz Dyjakon, 2021. "Evaluation of Urban Tree Leaf Biomass-Potential, Physico-Mechanical and Chemical Parameters of Raw Material and Solid Biofuel," Energies, MDPI, vol. 14(4), pages 1-14, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nabila, Rakhmawati & Hidayat, Wahyu & Haryanto, Agus & Hasanudin, Udin & Iryani, Dewi Agustina & Lee, Sihyun & Kim, Sangdo & Kim, Soohyun & Chun, Donghyuk & Choi, Hokyung & Im, Hyuk & Lim, Jeonghwan &, 2023. "Oil palm biomass in Indonesia: Thermochemical upgrading and its utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    2. Jezerska, Lucie & Sassmanova, Veronika & Prokes, Rostislav & Gelnar, Daniel, 2023. "The pelletization and torrefaction of coffee grounds, garden chaff and rapeseed straw," Renewable Energy, Elsevier, vol. 210(C), pages 346-354.
    3. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    4. Kumari, Rajni & Kumar, Manish & Vivekanand, V. & Pareek, Nidhi, 2023. "Chitin biorefinery: A narrative and prophecy of crustacean shell waste sustainable transformation into bioactives and renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Cheng Li & Xiaochen Yue & Jun Yang & Yafeng Yang & Haiping Gu & Wanxi Peng, 2019. "Catalytic Fast Pyrolysis of Forestry Wood Waste for Bio-Energy Recovery Using Nano-Catalysts," Energies, MDPI, vol. 12(20), pages 1-12, October.
    6. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Yao, Zhongliang & Ma, Xiaoqian & Xiao, Zhiyuan, 2020. "The effect of two pretreatment levels on the pyrolysis characteristics of water hyacinth," Renewable Energy, Elsevier, vol. 151(C), pages 514-527.
    8. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Bangun Adi Wijaya & Wahyu Hidayat & Melya Riniarti & Hendra Prasetia & Ainin Niswati & Udin Hasanudin & Irwan Sukri Banuwa & Sangdo Kim & Sihyun Lee & Jiho Yoo, 2022. "Meranti ( Shorea sp.) Biochar Application Method on the Growth of Sengon ( Falcataria moluccana ) as a Solution of Phosphorus Crisis," Energies, MDPI, vol. 15(6), pages 1-14, March.
    10. Patuzzi, Francesco & Basso, Daniele & Vakalis, Stergios & Antolini, Daniele & Piazzi, Stefano & Benedetti, Vittoria & Cordioli, Eleonora & Baratieri, Marco, 2021. "State-of-the-art of small-scale biomass gasification systems: An extensive and unique monitoring review," Energy, Elsevier, vol. 223(C).
    11. Silva, D.A.L. & Filleti, R.A.P. & Musule, R. & Matheus, T.T. & Freire, F., 2022. "A systematic review and life cycle assessment of biomass pellets and briquettes production in Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    12. Lei Han & Jinling Li & Chengtun Qu & Zhiguo Shao & Tao Yu & Bo Yang, 2022. "Recent Progress in Sludge Co-Pyrolysis Technology," Sustainability, MDPI, vol. 14(13), pages 1-12, June.
    13. Zhi Xu & Zhaohui Guo & Huimin Xie & Yulian Hu, 2022. "Effect of Cd on Pyrolysis Velocity and Deoxygenation Characteristics of Rice Straw: Analogized with Cd-Impregnated Representative Biomass Components," IJERPH, MDPI, vol. 19(15), pages 1-18, July.
    14. Dang, Han & Xu, Runsheng & Zhang, Jianliang & Wang, Mingyong & Ye, Lian & Jia, Guoli, 2023. "Removal of oxygen-containing functional groups during hydrothermal carbonization of biomass: Experimental and DFT study," Energy, Elsevier, vol. 276(C).
    15. Adrian Neacsa & Cristian Nicolae Eparu & Doru Bogdan Stoica, 2022. "Hydrogen–Natural Gas Blending in Distribution Systems—An Energy, Economic, and Environmental Assessment," Energies, MDPI, vol. 15(17), pages 1-26, August.
    16. Ruocco, Concetta & Palma, Vincenzo & Cortese, Marta & Martino, Marco, 2022. "Stability of bimetallic Ni/CeO2–SiO2 catalysts during fuel grade bioethanol reforming in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 182(C), pages 913-922.
    17. Okey Francis Obi & Ralf Pecenka & Michael J. Clifford, 2022. "A Review of Biomass Briquette Binders and Quality Parameters," Energies, MDPI, vol. 15(7), pages 1-22, March.
    18. Pryshliak Natalia & Tokarchuk Dina, 2020. "Socio-economic and environmental benefits of biofuel production development from agricultural waste in Ukraine," Environmental & Socio-economic Studies, Sciendo, vol. 8(1), pages 18-27, March.
    19. Tao Peng & Wenbin Zhang & Baiyao Liang & Guanwu Lian & Yun Zhang & Wei Zhao, 2023. "Electrocatalytic valorization of lignocellulose-derived aromatics at industrial-scale current densities," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    20. Chen, Dengyu & Cen, Kehui & Cao, Xiaobing & Chen, Fan & Zhang, Jie & Zhou, Jianbin, 2021. "Insight into a new phenolic-leaching pretreatment on bamboo pyrolysis: Release characteristics of pyrolytic volatiles, upgradation of three phase products, migration of elements, and energy yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:201:y:2022:i:p1:p:305-313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.