IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v261y2022ipas0360544222018631.html
   My bibliography  Save this article

Pathway to develop a low-carbon economy through energy-substitution technology in China

Author

Listed:
  • Wang, Yajun
  • Huang, Junbing

Abstract

As China is determined to develop a low-carbon economy, this study develops a carbon index as a proxy for a low-carbon economy and employs energy-substitution patents as an important technical factor to influence the low-carbon economy. The impact of heterogeneous energy-substitution technology on the low-carbon economy in China is also investigated. The conventional analysis methods, including the generalised method of moments, propensity score matching and difference-in-differences estimator, are employed. The heterogeneity and influencing mechanism of technology are also considered. Using the 2000–2016 data collected from 30 provinces in mainland China, we confirm that energy-substitution technology effectively promotes a low-carbon economy and that this kind of technology coming from enterprises also provides a better low-carbon economy than those from research institutions, university and individuals. We also find that utility-oriented technology effectively promotes a low-carbon economy than invention-oriented ones. However, invention-oriented technology does raise the degree of the low-carbon economy when it serves to complement utility-oriented technology. The influencing mechanism analysis following a two-step method clearly shows that energy-substitution technology promotes the degrees of low-carbon economy by increasing the use of clean energy.

Suggested Citation

  • Wang, Yajun & Huang, Junbing, 2022. "Pathway to develop a low-carbon economy through energy-substitution technology in China," Energy, Elsevier, vol. 261(PA).
  • Handle: RePEc:eee:energy:v:261:y:2022:i:pa:s0360544222018631
    DOI: 10.1016/j.energy.2022.124964
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222018631
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124964?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    3. Cai, Zhengyu & Yu, Chin-Hsien & Zhu, Chunhui, 2021. "Government-led urbanization and natural gas demand in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Adewale Alola, Andrew & Ozturk, Ilhan & Bekun, Festus Victor, 2021. "Is clean energy prosperity and technological innovation rapidly mitigating sustainable energy-development deficit in selected sub-Saharan Africa? A myth or reality," Energy Policy, Elsevier, vol. 158(C).
    5. Wu, Yinyin & Wang, Ping & Liu, Xin & Chen, Jiandong & Song, Malin, 2020. "Analysis of regional carbon allocation and carbon trading based on net primary productivity in China," China Economic Review, Elsevier, vol. 60(C).
    6. Huang, Junbing & Li, Xinghao & Wang, Yajun & Lei, Hongyan, 2021. "The effect of energy patents on China's carbon emissions: Evidence from the STIRPAT model," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    7. Ronald Shadbegian & Wayne Gray, 2006. "Assessing multi-dimensional performance: environmental and economic outcomes," Journal of Productivity Analysis, Springer, vol. 26(3), pages 213-234, December.
    8. Song, Yanwu & Zhang, Jinrui & Song, Yingkang & Fan, Xinran & Zhu, Yuqing & Zhang, Chen, 2020. "Can industry-university-research collaborative innovation efficiency reduce carbon emissions?," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    9. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, Oxford University Press, vol. 110(2), pages 353-377.
    10. Nguyen, Justin Hung & Phan, Hieu V., 2020. "Carbon risk and corporate capital structure," Journal of Corporate Finance, Elsevier, vol. 64(C).
    11. Laura Bottazzi & Giovanni Peri, 2007. "The International Dynamics of R&D and Innovation in the Long Run and in The Short Run," Economic Journal, Royal Economic Society, vol. 117(518), pages 486-511, March.
    12. Wang, Zhaohua & Yang, Zhongmin & Zhang, Yixiang & Yin, Jianhua, 2012. "Energy technology patents–CO2 emissions nexus: An empirical analysis from China," Energy Policy, Elsevier, vol. 42(C), pages 248-260.
    13. Pradhan, Ashis Kumar & Tiwari, Aviral Kumar, 2021. "Estimating the market risk of clean energy technologies companies using the expected shortfall approach," Renewable Energy, Elsevier, vol. 177(C), pages 95-100.
    14. Massimo Tavoni & Enrica Cian & Gunnar Luderer & Jan Steckel & Henri Waisman, 2012. "The value of technology and of its evolution towards a low carbon economy," Climatic Change, Springer, vol. 114(1), pages 39-57, September.
    15. David Popp, 2010. "Innovation and Climate Policy," NBER Working Papers 15673, National Bureau of Economic Research, Inc.
    16. Huang, Junbing & Xiang, Shiqi & Wang, Yajun & Chen, Xiang, 2021. "Energy-saving R&D and carbon intensity in China," Energy Economics, Elsevier, vol. 98(C).
    17. Cheng, Zhonghua & Li, Lianshui & Liu, Jun, 2018. "Industrial structure, technical progress and carbon intensity in China's provinces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2935-2946.
    18. Wang, Han & Chen, Zhoupeng & Wu, Xingyi & Nie, Xin, 2019. "Can a carbon trading system promote the transformation of a low-carbon economy under the framework of the porter hypothesis? —Empirical analysis based on the PSM-DID method," Energy Policy, Elsevier, vol. 129(C), pages 930-938.
    19. Wu, Haitao & Xu, Lina & Ren, Siyu & Hao, Yu & Yan, Guoyao, 2020. "How do energy consumption and environmental regulation affect carbon emissions in China? New evidence from a dynamic threshold panel model," Resources Policy, Elsevier, vol. 67(C).
    20. Zeqiraj, Veton & Sohag, Kazi & Soytas, Ugur, 2020. "Stock market development and low-carbon economy: The role of innovation and renewable energy," Energy Economics, Elsevier, vol. 91(C).
    21. Daron Acemoglu & Philippe Aghion & David Hémous, 2014. "The environment and directed technical change in a North–South model," Oxford Review of Economic Policy, Oxford University Press, vol. 30(3), pages 513-530.
    22. David Popp, 2010. "Innovation and Climate Policy," Annual Review of Resource Economics, Annual Reviews, vol. 2(1), pages 275-298, October.
    23. Wintoki, M. Babajide & Linck, James S. & Netter, Jeffry M., 2012. "Endogeneity and the dynamics of internal corporate governance," Journal of Financial Economics, Elsevier, vol. 105(3), pages 581-606.
    24. Pavić, Ivan & Capuder, Tomislav & Kuzle, Igor, 2016. "Low carbon technologies as providers of operational flexibility in future power systems," Applied Energy, Elsevier, vol. 168(C), pages 724-738.
    25. Luis Míguez, José & Porteiro, Jacobo & Pérez-Orozco, Raquel & Patiño, David & Rodríguez, Sandra, 2018. "Evolution of CO2 capture technology between 2007 and 2017 through the study of patent activity," Applied Energy, Elsevier, vol. 211(C), pages 1282-1296.
    26. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    27. repec:igg:jssoe0:v:7:y:2017:i:1:p:45-57 is not listed on IDEAS
    28. Nyambuu, Unurjargal & Semmler, Willi, 2020. "Climate change and the transition to a low carbon economy – Carbon targets and the carbon budget," Economic Modelling, Elsevier, vol. 84(C), pages 367-376.
    29. Alam, Md. Samsul & Atif, Muhammad & Chien-Chi, Chu & Soytaş, Uğur, 2019. "Does corporate R&D investment affect firm environmental performance? Evidence from G-6 countries," Energy Economics, Elsevier, vol. 78(C), pages 401-411.
    30. M. S. Dresselhaus & I. L. Thomas, 2001. "Alternative energy technologies," Nature, Nature, vol. 414(6861), pages 332-337, November.
    31. Nowotny, Janusz & Dodson, John & Fiechter, Sebastian & Gür, Turgut M. & Kennedy, Brendan & Macyk, Wojciech & Bak, Tadeusz & Sigmund, Wolfgang & Yamawaki, Michio & Rahman, Kazi A., 2018. "Towards global sustainability: Education on environmentally clean energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2541-2551.
    32. Tsaples, G. & Papathanasiou, J., 2021. "Data envelopment analysis and the concept of sustainability: A review and analysis of the literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    33. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    34. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," Review of Economic Studies, Oxford University Press, vol. 65(2), pages 261-294.
    35. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Oxford University Press, vol. 58(2), pages 277-297.
    36. Berk, Istemi & Kasman, Adnan & Kılınç, Dilara, 2020. "Towards a common renewable future: The System-GMM approach to assess the convergence in renewable energy consumption of EU countries," Energy Economics, Elsevier, vol. 87(C).
    37. Zhang, Shuwei & Bauer, Nico & Luderer, Gunnar & Kriegler, Elmar, 2014. "Role of technologies in energy-related CO2 mitigation in China within a climate-protection world: A scenarios analysis using REMIND," Applied Energy, Elsevier, vol. 115(C), pages 445-455.
    38. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tinta, Abdoulganiour Almame, 2023. "Education puzzle, financial inclusion, and energy substitution: Growth Scales," Energy Policy, Elsevier, vol. 175(C).
    2. Huang, Junbing & Lian, Shijia & Qu, Ran & Luan, Bingjiang & Wang, Yajun, 2023. "Investigating the role of enterprises' property rights in China's provincial industrial energy intensity," Energy, Elsevier, vol. 282(C).
    3. Hongyun Luo & Xiangyi Lin, 2022. "Empirical Study on the Low-Carbon Economic Efficiency in Zhejiang Province Based on an Improved DEA Model and Projection," Energies, MDPI, vol. 16(1), pages 1-14, December.
    4. Zhao, Congyu & Dong, Kangyin & Wang, Kun & Dong, Xiucheng, 2023. "Can low-carbon energy technology lead to energy resource carrying capacity improvement? The case of China," Energy Economics, Elsevier, vol. 127(PA).
    5. Yu, Lu & Liu, Yinwei & Niu, Yiran & Xiao, Zumian, 2023. "Greener together: The impact of China's mixed-ownership reform on firm carbon emissions," Energy Policy, Elsevier, vol. 180(C).
    6. Yun Chen & Da Wang & Wenxi Zhu & Yunfei Hou & Dingli Liu & Chongsen Ma & Tian Li & Yuan Yuan, 2023. "Effective Conditions for Achieving Carbon Unlocking Targets for Transport Infrastructure Development—Joint Analysis Based on PLS-SEM and NCA," IJERPH, MDPI, vol. 20(2), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Junbing & Luan, Bingjiang & He, Wanrui & Chen, Xiang & Li, Mengfan, 2022. "Energy technology of conservation versus substitution and energy intensity in China," Energy, Elsevier, vol. 244(PA).
    2. Emrah Kocak & Hayriye Hilal Baglitas, 2022. "The path to sustainable municipal solid waste management: Do human development, energy efficiency, and income inequality matter?," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1947-1962, December.
    3. Chen, Changhua & Luo, Yuqing & Zou, Hong & Huang, Junbing, 2023. "Understanding the driving factors and finding the pathway to mitigating carbon emissions in China's Yangtze River Delta region," Energy, Elsevier, vol. 278(PB).
    4. Dong-Hyeon Kim & Yi-Chen Wu & Shu-Chin Lin, 2022. "Carbon dioxide emissions, financial development and political institutions," Economic Change and Restructuring, Springer, vol. 55(2), pages 837-874, May.
    5. Yang Zhou & Jintao Fu & Ying Kong & Rui Wu, 2018. "How Foreign Direct Investment Influences Carbon Emissions, Based on the Empirical Analysis of Chinese Urban Data," Sustainability, MDPI, vol. 10(7), pages 1-19, June.
    6. Fotis, Panagiotis & Karkalakos, Sotiris & Asteriou, Dimitrios, 2017. "The relationship between energy demand and real GDP growth rate: The role of price asymmetries and spatial externalities within 34 countries across the globe," Energy Economics, Elsevier, vol. 66(C), pages 69-84.
    7. Huang, Junbing & Li, Xinghao & Wang, Yajun & Lei, Hongyan, 2021. "The effect of energy patents on China's carbon emissions: Evidence from the STIRPAT model," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    8. Shobande, Olatunji A. & Ogbeifun, Lawrence, 2023. "Pooling cross-sectional and time series data for estimating causality between technological innovation, affluence and carbon dynamics: A comparative evidence from developed and developing countries," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    9. Huang, Junbing & Xiang, Shiqi & Wang, Yajun & Chen, Xiang, 2021. "Energy-saving R&D and carbon intensity in China," Energy Economics, Elsevier, vol. 98(C).
    10. Jessica M. Mc Lay & Roy Lay-Yee & Barry J. Milne & Peter Davis, 2015. "Regression-Style Models for Parameter Estimation in Dynamic Microsimulation: An Empirical Performance Assessment," International Journal of Microsimulation, International Microsimulation Association, vol. 8(2), pages 83-127.
    11. Carranza, Luis J. & Cayo, Juan M. & Galdon-Sanchez, Jose E., 2003. "Exchange rate volatility and economic performance in Peru: a firm level analysis," Emerging Markets Review, Elsevier, vol. 4(4), pages 472-496, December.
    12. Bertrand, Olivier & Zuniga, Pluvia, 2006. "R&D and M&A: Are cross-border M&A different? An investigation on OECD countries," International Journal of Industrial Organization, Elsevier, vol. 24(2), pages 401-423, March.
    13. Mukhopadhyay, Jhuma & Chakraborty, Indrani, 2017. "Foreign institutional investment, business groups and firm performance: Evidence from India," Research in International Business and Finance, Elsevier, vol. 39(PA), pages 454-465.
    14. Jacques Mairesse & Bronwyn H. Hall & Benoît Mulkay, 1999. "Firm-Level Investment in France and the United States: An Exploration of What We Have Learned in Twenty Years," Annals of Economics and Statistics, GENES, issue 55-56, pages 27-67.
    15. Crt Kostevc, 2005. "Performance of Exporters: Scale Effects or Continuous Productivity Improvements," LICOS Discussion Papers 15905, LICOS - Centre for Institutions and Economic Performance, KU Leuven.
    16. José María ARRANZ & Carlos GARCÍA SERRANO & Virginia HERNANZ, 2013. "Active labour market policies in Spain: A macroeconomic evaluation," International Labour Review, International Labour Organization, vol. 152(2), pages 327-348, June.
    17. Yoshitsugu Kitazawa, 2003. "Dynamic Panel Data Model and Moment Generating Function," Discussion Papers 13, Kyushu Sangyo University, Faculty of Economics.
    18. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    19. Wendler, Tobias & Töbelmann, Daniel & Günther, Jutta, 2021. "Natural resources and technology - on the mitigating effect of green tech," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242416, Verein für Socialpolitik / German Economic Association.
    20. Piotr Gretszel & Henryk Gurgul & £ukasz Lach & Stefan Schleicher, 2020. "Testing for the economic and environmental impacts of EU Emissions Trading System: A panel GMM approach," Managerial Economics, AGH University of Science and Technology, Faculty of Management, vol. 21(2), pages 99-125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pa:s0360544222018631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.