IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v127y2023ipas014098832300590x.html
   My bibliography  Save this article

Can low-carbon energy technology lead to energy resource carrying capacity improvement? The case of China

Author

Listed:
  • Zhao, Congyu
  • Dong, Kangyin
  • Wang, Kun
  • Dong, Xiucheng

Abstract

Energy resource carrying capacity serves as a crucial yardstick for assessing the sustainability of energy systems. To explore to what extent and how low-carbon energy technology affects energy resource carrying capacity, this study first calculates the level of low-carbon energy technology and energy resource carrying capacity in China for the period 2000–2019, and then employs the instrumental variable generalized method of moments (IV-GMM) model to investigate the marginal impact of low-carbon energy technology on energy resource carrying capacity. We also explore their asymmetric, direct, as well as indirect nexus. We find that (1) low-carbon energy technology presents benefits to the energy resource carrying capacity improvement, which indicates their positive nexus. (2) Low-carbon energy technology has a diminishing marginal effect on energy resource carrying capacity as the level of energy resource carrying capacity increases, which implies their asymmetric nexus. (3) Low-carbon energy technology has significant promotion effects on socioeconomic development, energy capacity, and environment capacity, which are three dimensions of energy resource carrying capacity. (4) Energy transition and energy efficiency are two positive mediators in the impact of low-carbon energy technology on energy resource carrying capacity. Several targeted policy implications are proposed based on the above findings.

Suggested Citation

  • Zhao, Congyu & Dong, Kangyin & Wang, Kun & Dong, Xiucheng, 2023. "Can low-carbon energy technology lead to energy resource carrying capacity improvement? The case of China," Energy Economics, Elsevier, vol. 127(PA).
  • Handle: RePEc:eee:eneeco:v:127:y:2023:i:pa:s014098832300590x
    DOI: 10.1016/j.eneco.2023.107092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098832300590X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.107092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khan, Zeeshan & Ali, Shahid & Dong, Kangyin & Li, Rita Yi Man, 2021. "How does fiscal decentralization affect CO2 emissions? The roles of institutions and human capital," Energy Economics, Elsevier, vol. 94(C).
    2. Zheng, Shuxian & Zhou, Xuanru & Tan, Zhanglu & Liu, Chan & Hu, Han & Yuan, Hui & Peng, Shengnan & Cai, Xiaomei, 2023. "Assessment of the global energy transition: Based on trade embodied energy analysis," Energy, Elsevier, vol. 273(C).
    3. Wei, Jia & Wen, Jun & Wang, Xiao-Yang & Ma, Jie & Chang, Chun-Ping, 2023. "Green innovation, natural extreme events, and energy transition: Evidence from Asia-Pacific economies," Energy Economics, Elsevier, vol. 121(C).
    4. Laura Bottazzi & Giovanni Peri, 2007. "The International Dynamics of R&D and Innovation in the Long Run and in The Short Run," Economic Journal, Royal Economic Society, vol. 117(518), pages 486-511, March.
    5. Zhang, Qi & Wu, Xifeng & Chen, Yu, 2022. "Is economic crisis an opportunity for realizing the low-carbon transition? A simulation study on the interaction between economic cycle and energy regulation policy," Energy Policy, Elsevier, vol. 168(C).
    6. Shang, Juan & Wang, Zhuo & Li, Ling & Chen, Yong & Li, Pengfei, 2018. "A study on the correlation between technology innovation and the new-type urbanization in Shaanxi province," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 266-273.
    7. Yu Liu & Fangchen Shi & Hongman He & Liyin Shen & Wenzhu Luo & Lingyun Sun, 2021. "Study on the Matching Degree between Land Resources Carrying Capacity and Industrial Development in Main Cities of Xinjiang, China," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
    8. Wenzhu Luo & Chi Jin & Liyin Shen, 2022. "The Evolution of Land Resource Carrying Capacity in 35 Major Cities in China," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
    9. Zhao, Congyu & Wang, Kun & Dong, Xiucheng & Dong, Kangyin, 2022. "Is smart transportation associated with reduced carbon emissions? The case of China," Energy Economics, Elsevier, vol. 105(C).
    10. Liu, Zhihong & ul Islam, Misbah & Alarifi, Ghadah Abdulrahman & Cong, Phan The & Khudoykulov, Khurshid & Quynh, Le Nhu & Hossain, Md. Shamim, 2023. "Does energy efficiency mediate a green economic recovery? Evidence from China," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 802-815.
    11. Liu, Wei & Shen, Yedan & Razzaq, Asim, 2023. "How renewable energy investment, environmental regulations, and financial development derive renewable energy transition: Evidence from G7 countries," Renewable Energy, Elsevier, vol. 206(C), pages 1188-1197.
    12. Zhao, Congyu & Dong, Kangyin & Wang, Kun & Dong, Xiucheng, 2022. "How does energy trilemma eradication reduce carbon emissions? The role of dual environmental regulation for China," Energy Economics, Elsevier, vol. 116(C).
    13. Irfan, Muhammad & Rehman, Mubeen Abdur & Razzaq, Asif & Hao, Yu, 2023. "What derives renewable energy transition in G-7 and E-7 countries? The role of financial development and mineral markets," Energy Economics, Elsevier, vol. 121(C).
    14. Hötte, Kerstin & Pichler, Anton & Lafond, François, 2021. "The rise of science in low-carbon energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    15. Wang, Yajun & Huang, Junbing, 2022. "Pathway to develop a low-carbon economy through energy-substitution technology in China," Energy, Elsevier, vol. 261(PA).
    16. Lee, Chien-Chiang & He, Zhi-Wen & Xiao, Fu, 2022. "How does information and communication technology affect renewable energy technology innovation? International evidence," Renewable Energy, Elsevier, vol. 200(C), pages 546-557.
    17. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    18. Ge, Tao & Cai, Xuesen & Song, Xiaowei, 2022. "How does renewable energy technology innovation affect the upgrading of industrial structure? The moderating effect of green finance," Renewable Energy, Elsevier, vol. 197(C), pages 1106-1114.
    19. Wenzhu Luo & Liyin Shen & Lingyu Zhang & Xia Liao & Conghui Meng & Chi Jin, 2022. "A Load-Carrier Perspective Method for Evaluating Land Resources Carrying Capacity," IJERPH, MDPI, vol. 19(9), pages 1-21, May.
    20. Yu, Hao & Wei, Yi-Ming & Tang, Bao-Jun & Mi, Zhifu & Pan, Su-Yan, 2016. "Assessment on the research trend of low-carbon energy technology investment: A bibliometric analysis," Applied Energy, Elsevier, vol. 184(C), pages 960-970.
    21. Zhao, Congyu & Wang, Jianda & Dong, Kangyin & Wang, Kun, 2023. "How does renewable energy encourage carbon unlocking? A global case for decarbonization," Resources Policy, Elsevier, vol. 83(C).
    22. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    23. Awaworyi Churchill, Sefa & Inekwe, John & Ivanovski, Kris & Smyth, Russell, 2023. "Human capital and energy consumption: Six centuries of evidence from the United Kingdom," Energy Economics, Elsevier, vol. 117(C).
    24. Alexander E. MacDonald & Christopher T. M. Clack & Anneliese Alexander & Adam Dunbar & James Wilczak & Yuanfu Xie, 2016. "Future cost-competitive electricity systems and their impact on US CO2 emissions," Nature Climate Change, Nature, vol. 6(5), pages 526-531, May.
    25. Li, Wei & Cao, Ning & Xiang, Zejia, 2023. "Drivers of renewable energy transition: The role of ICT, human development, financialization, and R&D investment in China," Renewable Energy, Elsevier, vol. 206(C), pages 441-450.
    26. Li, Ke & Lin, Boqiang, 2018. "How to promote energy efficiency through technological progress in China?," Energy, Elsevier, vol. 143(C), pages 812-821.
    27. Taghizadeh-Hesary, Farhad & Dong, Kangyin & Zhao, Congyu & Phoumin, Han, 2023. "Can financial and economic means accelerate renewable energy growth in the climate change era? The case of China," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 730-743.
    28. Zhao, Jun & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin & Jiang, Hongdian, 2022. "How does industrial structure adjustment reduce CO2 emissions? Spatial and mediation effects analysis for China," Energy Economics, Elsevier, vol. 105(C).
    29. Jay Fuhrman & Candelaria Bergero & Maridee Weber & Seth Monteith & Frances M. Wang & Andres F. Clarens & Scott C. Doney & William Shobe & Haewon McJeon, 2023. "Diverse carbon dioxide removal approaches could reduce impacts on the energy–water–land system," Nature Climate Change, Nature, vol. 13(4), pages 341-350, April.
    30. Acheampong, Alex O. & Amponsah, Mary & Boateng, Elliot, 2020. "Does financial development mitigate carbon emissions? Evidence from heterogeneous financial economies," Energy Economics, Elsevier, vol. 88(C).
    31. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    32. Paramati, Sudharshan Reddy & Shahzad, Umer & Doğan, Buhari, 2022. "The role of environmental technology for energy demand and energy efficiency: Evidence from OECD countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    33. Zhang, Wenting & Wang, Zibang & Adebayo, Tomiwa Sunday & Altuntaş, Mehmet, 2022. "Asymmetric linkages between renewable energy consumption, financial integration, and ecological sustainability: Moderating role of technology innovation and urbanization," Renewable Energy, Elsevier, vol. 197(C), pages 1233-1243.
    34. Chishti, Muhammad Zubair & Sinha, Avik & Zaman, Umer & Shahzad, Umer, 2023. "Exploring the dynamic connectedness among energy transition and its drivers: Understanding the moderating role of global geopolitical risk," Energy Economics, Elsevier, vol. 119(C).
    35. Liu, Fengyu & Feng, Jue & Zhai, Ge & Razzaq, Asif, 2022. "Influence of fiscal decentralization and renewable energy investment on ecological sustainability in EU: What is the moderating role of institutional governance?," Renewable Energy, Elsevier, vol. 200(C), pages 1265-1274.
    36. Candelaria Bergero & Greer Gosnell & Dolf Gielen & Seungwoo Kang & Morgan Bazilian & Steven J. Davis, 2023. "Pathways to net-zero emissions from aviation," Nature Sustainability, Nature, vol. 6(4), pages 404-414, April.
    37. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    38. T. M. Logan & M. J. Anderson & A. C. Reilly, 2023. "Risk of isolation increases the expected burden from sea-level rise," Nature Climate Change, Nature, vol. 13(4), pages 397-402, April.
    39. Zhao, Congyu & Dong, Kangyin & Jiang, Hong-Dian & Wang, Kun & Dong, Xiucheng, 2023. "How does energy poverty eradication realize the path to carbon unlocking? The case of China," Energy Economics, Elsevier, vol. 121(C).
    40. Shen, Liyin & Cheng, Guangyu & Du, Xiaoyun & Meng, Conghui & Ren, Yitian & Wang, Jinhuan, 2022. "Can urban agglomeration bring “1 + 1 > 2Effect”? A perspective of land resource carrying capacity," Land Use Policy, Elsevier, vol. 117(C).
    41. Shiju Liao & Xiaoyun Du & Liyin Shen & Minghe Lv, 2021. "Evaluation Method for Urban Public Service Carrying Capacity (UPSCC): A Qualitative–Quantitative Bi-Dimensional Perspective," IJERPH, MDPI, vol. 18(23), pages 1-18, November.
    42. Feng, Chen-Yu & Yang, Xiaodong & Afshan, Sahar & Irfan, Muhamamd, 2023. "Can renewable energy technology innovation promote mineral resources’ green utilization efficiency? Novel insights from regional development inequality," Resources Policy, Elsevier, vol. 82(C).
    43. Li, Guoxiang & Wu, Haoyue & Jiang, Jieshu & Zong, Qingqing, 2023. "Digital finance and the low-carbon energy transition (LCET) from the perspective of capital-biased technical progress," Energy Economics, Elsevier, vol. 120(C).
    44. Mamidi, Varsha & Marisetty, Vijaya B. & Thomas, Ewan Nikhil, 2021. "Clean energy transition and intertemporal socio-economic development: Evidence from an emerging market," Energy Economics, Elsevier, vol. 101(C).
    45. Wu, Linfei & Sun, Liwen & Qi, Peixiao & Ren, Xiangwei & Sun, Xiaoting, 2021. "Energy endowment, industrial structure upgrading, and CO2 emissions in China: Revisiting resource curse in the context of carbon emissions," Resources Policy, Elsevier, vol. 74(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taghizadeh-Hesary, Farhad & Dong, Kangyin & Zhao, Congyu & Phoumin, Han, 2023. "Can financial and economic means accelerate renewable energy growth in the climate change era? The case of China," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 730-743.
    2. Zhao, Congyu & Dong, Kangyin & Jiang, Hong-Dian & Wang, Kun & Dong, Xiucheng, 2023. "How does energy poverty eradication realize the path to carbon unlocking? The case of China," Energy Economics, Elsevier, vol. 121(C).
    3. Zhao, Congyu & Jia, Rongwen & Dong, Kangyin, 2023. "How does smart transportation technology promote green total factor productivity? The case of China," Research in Transportation Economics, Elsevier, vol. 101(C).
    4. Dong, Kangyin & Yang, Senmiao & Wang, Jianda & Dong, Xiucheng, 2023. "Revisiting energy justice: Is renewable energy technology innovation a tool for realizing a just energy system?," Energy Policy, Elsevier, vol. 183(C).
    5. Zhao, Congyu & Jia, Rongwen & Dong, Kangyin, 2023. "Does financial inclusion achieve the dual dividends of narrowing carbon inequality within cities and between cities? Empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    6. Kangni Lyu & Shuwang Yang & Kun Zheng & Yao Zhang, 2023. "How Does the Digital Economy Affect Carbon Emission Efficiency? Evidence from Energy Consumption and Industrial Value Chain," Energies, MDPI, vol. 16(2), pages 1-20, January.
    7. Lee, Chien-Chiang & Yuan, Zihao & Lee, Chi-Chuan & Chang, Yu-Fang, 2022. "The impact of renewable energy technology innovation on energy poverty: Does climate risk matter?," Energy Economics, Elsevier, vol. 116(C).
    8. Zhao, Congyu & Wang, Jianda & Dong, Kangyin & Wang, Kun, 2023. "How does renewable energy encourage carbon unlocking? A global case for decarbonization," Resources Policy, Elsevier, vol. 83(C).
    9. Suizi Wang & Jiangwen Fan & Haiyan Zhang & Yaxian Zhang & Huajun Fang, 2023. "Harmonizing Population, Grain, and Land: Unlocking Sustainable Land Resource Management in the Farming–Pastoral Ecotone," Land, MDPI, vol. 12(7), pages 1-14, June.
    10. Wang, Yajun & Huang, Junbing, 2022. "Pathway to develop a low-carbon economy through energy-substitution technology in China," Energy, Elsevier, vol. 261(PA).
    11. Yang, Senmiao & Wang, Jianda & Dong, Kangyin & Jiang, Qingzhe, 2023. "A path towards China's energy justice: How does digital technology innovation bring about a just revolution?," Energy Economics, Elsevier, vol. 127(PA).
    12. Hötte, Kerstin & Jee, Su Jung, 2022. "Knowledge for a warmer world: A patent analysis of climate change adaptation technologies," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    13. Hu, Hui & Qi, Shaozhou & Chen, Yuanzhi, 2023. "Using green technology for a better tomorrow: How enterprises and government utilize the carbon trading system and incentive policies," China Economic Review, Elsevier, vol. 78(C).
    14. Wendler, Tobias & Töbelmann, Daniel & Günther, Jutta, 2021. "Natural resources and technology - on the mitigating effect of green tech," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242416, Verein für Socialpolitik / German Economic Association.
    15. Taimoor Arif Kiani & Samina Sabir & Unbreen Qayyum & Sohail Anjum, 2023. "Estimating the effect of technological innovations on environmental degradation: empirical evidence from selected ASEAN and SAARC countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6529-6550, July.
    16. Valeria Costantini & Valerio Leone Sciabolazza & Elena Paglialunga, 2023. "Network-driven positive externalities in clean energy technology production: the case of energy efficiency in the EU residential sector," The Journal of Technology Transfer, Springer, vol. 48(2), pages 716-748, April.
    17. Liu, Yang & Wang, Jianda & Dong, Kangyin & Taghizadeh-Hesary, Farhad, 2023. "How does natural resource abundance affect green total factor productivity in the era of green finance? Global evidence," Resources Policy, Elsevier, vol. 81(C).
    18. Zheng, Li & Yuan, Ling & Khan, Zeeshan & Badeeb, Ramez Abubakr & Zhang, Leilei, 2023. "How G-7 countries are paving the way for net-zero emissions through energy efficient ecosystem?," Energy Economics, Elsevier, vol. 117(C).
    19. Lee, Chien-Chiang & Chen, Mei-Ping & Yuan, Zihao, 2023. "Is information and communication technology a driver for renewable energy?," Energy Economics, Elsevier, vol. 124(C).
    20. Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).

    More about this item

    Keywords

    Low-carbon energy technology; Energy resource carrying capacity; Energy transition; Energy efficiency; China;
    All these keywords.

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • P28 - Political Economy and Comparative Economic Systems - - Socialist and Transition Economies - - - Natural Resources; Environment
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:127:y:2023:i:pa:s014098832300590x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.