IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v48y2012icp159-166.html
   My bibliography  Save this article

Resource rents: The effects of energy taxes and quantity instruments for climate protection

Author

Listed:
  • Eisenack, Klaus
  • Edenhofer, Ottmar
  • Kalkuhl, Matthias

Abstract

Carbon dioxide emissions correspond to fossil resource use. When considering this supply side of climate protection, crucial questions come to fore. It seems likely that owners of fossil resources would object to emission reductions. Moreover, policy instruments such as taxes may not be effective at all: it seems individually rational to leave no fossil resources unused. In this context, it can be expected that economic sectors will react strategically to climate policy, aiming at a re-distribution of rents.

Suggested Citation

  • Eisenack, Klaus & Edenhofer, Ottmar & Kalkuhl, Matthias, 2012. "Resource rents: The effects of energy taxes and quantity instruments for climate protection," Energy Policy, Elsevier, vol. 48(C), pages 159-166.
  • Handle: RePEc:eee:enepol:v:48:y:2012:i:c:p:159-166
    DOI: 10.1016/j.enpol.2012.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512003953
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rolf Golombek & Mads Greaker & Sverre A.C. Kittelsen & Ole Røgeberg & Finn Roar Aune, 2011. "Carbon Capture and Storage Technologies in the European Power Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 209-238.
    2. Amitrajeet Batabyal, 1996. "Consistency and optimality in a dynamic game of pollution control I: Competition," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 8(2), pages 205-220, September.
    3. Forster, Bruce A., 1980. "Optimal energy use in a polluted environment," Journal of Environmental Economics and Management, Elsevier, vol. 7(4), pages 321-333, December.
    4. Lucas, Robert Jr. & Stokey, Nancy L., 1983. "Optimal fiscal and monetary policy in an economy without capital," Journal of Monetary Economics, Elsevier, vol. 12(1), pages 55-93.
    5. Long, Ngo Van & Sinn, Hans-Werner, 1985. "Surprise Price Shifts, Tax Changes and the Supply Behaviour of Resource Extracting Firms," Australian Economic Papers, Wiley Blackwell, vol. 24(45), pages 278-289, December.
    6. Ottmar Edenhofer , Brigitte Knopf, Terry Barker, Lavinia Baumstark, Elie Bellevrat, Bertrand Chateau, Patrick Criqui, Morna Isaac, Alban Kitous, Socrates Kypreos, Marian Leimbach, Kai Lessmann, Bertra, 2010. "The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    7. Hoel, Michael & Kverndokk, Snorre, 1996. "Depletion of fossil fuels and the impacts of global warming," Resource and Energy Economics, Elsevier, vol. 18(2), pages 115-136, June.
    8. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39, pages 137-137.
    9. Schmutzler, Armin & Goulder, Lawrence H., 1997. "The Choice between Emission Taxes and Output Taxes under Imperfect Monitoring," Journal of Environmental Economics and Management, Elsevier, vol. 32(1), pages 51-64, January.
    10. Schulze, William D., 1974. "The optimal use of non-renewable resources: The theory of extraction," Journal of Environmental Economics and Management, Elsevier, vol. 1(1), pages 53-73, May.
    11. Chamley, Christophe, 1986. "Optimal Taxation of Capital Income in General Equilibrium with Infinite Lives," Econometrica, Econometric Society, vol. 54(3), pages 607-622, May.
    12. Edenhofer, Ottmar & Bauer, Nico & Kriegler, Elmar, 2005. "The impact of technological change on climate protection and welfare: Insights from the model MIND," Ecological Economics, Elsevier, vol. 54(2-3), pages 277-292, August.
    13. Michael Hoel, 2010. "Is there a Green Paradox?," CESifo Working Paper Series 3168, CESifo.
    14. Farzin, Y. H., 1996. "Optimal pricing of environmental and natural resource use with stock externalities," Journal of Public Economics, Elsevier, vol. 62(1-2), pages 31-57, October.
    15. Jeffrey A. Krautkraemer, 1985. "Optimal Growth, Resource Amenities and the Preservation of Natural Environments," Review of Economic Studies, Oxford University Press, vol. 52(1), pages 153-169.
    16. Hans-Werner Sinn, 2008. "Public policies against global warming: a supply side approach," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 15(4), pages 360-394, August.
    17. van der Werf, Edwin, 2008. "Production functions for climate policy modeling: An empirical analysis," Energy Economics, Elsevier, vol. 30(6), pages 2964-2979, November.
    18. Amitrajeet Batabyal, 1996. "Consistency and optimality in a dynamic game of pollution control II: Monopoly," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 8(3), pages 315-330, October.
    19. Olli Tahvonen, 1997. "Fossil Fuels, Stock Externalities, and Backstop Technology," Canadian Journal of Economics, Canadian Economics Association, vol. 30(4), pages 855-874, November.
    20. Ulph, Alistair & Ulph, David, 1994. "The Optimal Time Path of a Carbon Tax," Oxford Economic Papers, Oxford University Press, vol. 46(0), pages 857-868, Supplemen.
    21. van der Werf, Edwin, 2007. "Production Functions for Climate Policy Modeling: An Empirical Analysis," Kiel Working Papers 1316, Kiel Institute for the World Economy (IfW).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marlene Kammerer & Chandreyee Namhata, 2018. "What drives the adoption of climate change mitigation policy? A dynamic network approach to policy diffusion," Policy Sciences, Springer;Society of Policy Sciences, vol. 51(4), pages 477-513, December.
    2. Andreas A. Renz & Christoph Weber, 2012. "A Hotelling Model for Fixed-Cost Driven Power Generation," EWL Working Papers 1206, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Jan 2013.
    3. Concetta Castiglione & Davide Infante & Maria Teresa Minervini & Janna Smirnova, 2014. "Environmental taxation in Europe: What does it depend on?," Cogent Economics & Finance, Taylor & Francis Journals, vol. 2(1), pages 1-8, December.
    4. Daniel Nachtigall, 2017. "Prices versus Quantities: The Impact of Fracking on the Choice of Climate Policy Instruments in the Presence of OPEC," Working Papers 2017001, Berlin Doctoral Program in Economics and Management Science (BDPEMS).
    5. Concetta Castiglione & Davide Infante & Janna Smirnova, 2014. "Is There Any Evidence on the Existence of an Environmental Taxation Kuznets Curve? The Case of European Countries under Their Rule of Law Enforcement," Sustainability, MDPI, Open Access Journal, vol. 6(10), pages 1-21, October.
    6. Johannes Pfeiffer, 2017. "Fossil Resources and Climate Change – The Green Paradox and Resource Market Power Revisited in General Equilibrium," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 77.
    7. Christian Beermann, 2015. "Climate Policy and the Intertemporal Supply of Fossil Resources," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 62.
    8. Nachtigall, Daniel, 2017. "Prices versus quantities: The impact of fracking on the choice of climate policy instruments in the presence of OPEC," Discussion Papers 2017/6, Free University Berlin, School of Business & Economics.
    9. Philipp M. Richter & Roman Mendelevitch & Frank Jotzo, 2018. "Coal taxes as supply-side climate policy: a rationale for major exporters?," Climatic Change, Springer, vol. 150(1), pages 43-56, September.
    10. Kim Collins & Roman Mendelevitch, 2015. "Leaving Coal Unburned: Options for Demand-Side and Supply-Side Policies," DIW Roundup: Politik im Fokus 87, DIW Berlin, German Institute for Economic Research.

    More about this item

    Keywords

    Resource extraction; Supply side; Rent-seeking;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:48:y:2012:i:c:p:159-166. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.