IDEAS home Printed from https://ideas.repec.org/p/zbw/vfsc13/79944.html
   My bibliography  Save this paper

Flexibility in Europe's power sector - an additional requirement or an automatic complement?

Author

Listed:
  • Bertsch, Joachim
  • Growitsch, Christian
  • Lorenczik, Stefan
  • Nagl, Stephan

Abstract

The EU member states have declared to strongly increase the share of Renewable Energy Sources in the next decades. Given a large deployment of wind and solar capacities as well as limited cost-efficient storage technologies, this has two major impacts on electricity systems. First, the electricity system has to be flexible enough to cope with the volatile RES-E generation i.e. ramp up supply or ramp down demand on short notice. Second, sufficient back-up capacities are needed for times with low feed-in from wind and solar capacities. The provision of both back-up capacity has been intensively discussed in the previous literature of recent years (for instance Cramton and Stoft, 2008 and Joskow, 2008). In addition, Lamadrid et al (2011) argue that with increasing volatility, incentives to invest in flexible resources should be implemented in market design. However, they did not have a look at the dynamic view in an integrated analysis necessary to to answer the questions of how an electricity system can adapt to an increasing share of renewables. This paper therefore analyses the flexibility requirements of the future European electricity system and the policy implications for market design with a system-economic dynamic approach. For this purpose, we simulate the development of the European electricity markets up to 2050 by using a linear investment and dispatch optimization model. Flexibility requirements are implemented in the model via constraints for ramping and provision of balancing power. We find that although an increase of fluctuating renewables has a tremendous impact on volatility and therefore flexibility requirements, the main trigger for investments into flexible conventional capacity are the achievable full load hours rather than ramping capabilities. Therefore any market design with investment incentives of achievable full load hours does not need additional incentives for flexibility.

Suggested Citation

  • Bertsch, Joachim & Growitsch, Christian & Lorenczik, Stefan & Nagl, Stephan, 2013. "Flexibility in Europe's power sector - an additional requirement or an automatic complement?," Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79944, Verein für Socialpolitik / German Economic Association.
  • Handle: RePEc:zbw:vfsc13:79944
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/79944/1/VfS_2013_pid_852.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nagl, Stephan & Fürsch, Michaela & Jägemann, Cosima & Bettzüge, Marc Oliver, 2011. "The economic value of storage in renewable power systems - the case of thermal energy storage in concentrating solar plants," EWI Working Papers 2011-8, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    2. Cramton, Peter & Stoft, Steven, 2008. "Forward reliability markets: Less risk, less market power, more efficiency," Utilities Policy, Elsevier, vol. 16(3), pages 194-201, September.
    3. Nicolosi, Marco, 2010. "Wind power integration and power system flexibility-An empirical analysis of extreme events in Germany under the new negative price regime," Energy Policy, Elsevier, vol. 38(11), pages 7257-7268, November.
    4. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    5. De Jonghe, Cedric & Delarue, Erik & Belmans, Ronnie & D'haeseleer, William, 2011. "Determining optimal electricity technology mix with high level of wind power penetration," Applied Energy, Elsevier, vol. 88(6), pages 2231-2238, June.
    6. Joskow, Paul L., 2008. "Capacity payments in imperfect electricity markets: Need and design," Utilities Policy, Elsevier, vol. 16(3), pages 159-170, September.
    7. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    8. Jägemann, Cosima & Fürsch, Michaela & Hagspiel, Simeon & Nagl, Stephan, 2013. "Decarbonizing Europe's power sector by 2050 — Analyzing the economic implications of alternative decarbonization pathways," Energy Economics, Elsevier, vol. 40(C), pages 622-636.
    9. Richter, Jan, 2011. "DIMENSION - A Dispatch and Investment Model for European Electricity Markets," EWI Working Papers 2011-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    10. Matthias Finkenrath, 2011. "Cost and Performance of Carbon Dioxide Capture from Power Generation," IEA Energy Papers 2011/5, OECD Publishing.
    11. Möst, Dominik & Fichtner, Wolf, 2010. "Renewable energy sources in European energy supply and interactions with emission trading," Energy Policy, Elsevier, vol. 38(6), pages 2898-2910, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karsten Neuhoff & Sophia Rüster & Sebastian Schwenen, 2015. "Power Market Design beyond 2020: Time to Revisit Key Elements?," Discussion Papers of DIW Berlin 1456, DIW Berlin, German Institute for Economic Research.
    2. Christian Gambardella & Michael Pahle & Wolf-Peter Schill, 2016. "Do Benefits from Dynamic Tariffing Rise? Welfare Effects of Real-Time Pricing under Carbon-Tax-Induced Variable Renewable Energy Supply," Discussion Papers of DIW Berlin 1621, DIW Berlin, German Institute for Economic Research.
    3. repec:eee:energy:v:137:y:2017:i:c:p:823-833 is not listed on IDEAS
    4. Green, Richard & Léautier, Thomas-Olivier, 2015. "Do costs fall faster than revenues? Dynamics of renewables entry into electricity markets," TSE Working Papers 15-591, Toulouse School of Economics (TSE).
    5. repec:eee:eecrev:v:99:y:2017:i:c:p:130-150 is not listed on IDEAS
    6. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    7. repec:rsr:supplm:v:65:y:2017:i:8:p:19-34 is not listed on IDEAS
    8. Krakowski, Vincent & Assoumou, Edi & Mazauric, Vincent & Maïzi, Nadia, 2016. "Feasible path toward 40–100% renewable energy shares for power supply in France by 2050: A prospective analysis," Applied Energy, Elsevier, vol. 171(C), pages 501-522.
    9. Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," European Economic Review, Elsevier, vol. 99(C), pages 130-150.
    10. Merrick, James H., 2016. "On representation of temporal variability in electricity capacity planning models," Energy Economics, Elsevier, vol. 59(C), pages 261-274.
    11. Hayn, Marian & Bertsch, Valentin & Zander, Anne & Nickel, Stefan & Fichtner, Wolf, 2016. "The impact of electricity tariffs on residential demand side flexibility," Working Paper Series in Production and Energy 14, Karlsruher Institut für Technologie (KIT), Institute for Industrial Production (IIP).
    12. Krakowski, Vincent & Assoumou, Edi & Mazauric, Vincent & Maïzi, Nadia, 2016. "Reprint of Feasible path toward 40–100% renewable energy shares for power supply in France by 2050: A prospective analysis," Applied Energy, Elsevier, vol. 184(C), pages 1529-1550.
    13. repec:eee:ejores:v:267:y:2018:i:2:p:643-658 is not listed on IDEAS
    14. Cebulla, F. & Fichter, T., 2017. "Merit order or unit-commitment: How does thermal power plant modeling affect storage demand in energy system models?," Renewable Energy, Elsevier, vol. 105(C), pages 117-132.
    15. repec:eee:rensus:v:82:y:2018:i:p3:p:3168-3178 is not listed on IDEAS
    16. Malischek, Raimund & Trüby, Johannes, 2016. "The future of nuclear power in France: an analysis of the costs of phasing-out," Energy, Elsevier, vol. 116(P1), pages 908-921.
    17. Kotowicz, Janusz & Bartela, Łukasz & Węcel, Daniel & Dubiel, Klaudia, 2017. "Hydrogen generator characteristics for storage of renewably-generated energy," Energy, Elsevier, vol. 118(C), pages 156-171.
    18. repec:eee:rensus:v:81:y:2018:i:p1:p:1049-1086 is not listed on IDEAS
    19. Devine, Mel & Bertsch, Valentin, 2016. "Examining the Benefits of Load Shedding Strategies using a Rolling-Horizon Stochastic Mixed Complementarity Equilibrium Model," Papers WP541, Economic and Social Research Institute (ESRI).
    20. Zakeri, Behnam & Virasjoki, Vilma & Syri, Sanna & Connolly, David & Mathiesen, Brian V. & Welsch, Manuel, 2016. "Impact of Germany's energy transition on the Nordic power market – A market-based multi-region energy system model," Energy, Elsevier, vol. 115(P3), pages 1640-1662.
    21. Batas Bjelić, Ilija & Rajaković, Nikola & Krajačić, Goran & Duić, Neven, 2016. "Two methods for decreasing the flexibility gap in national energy systems," Energy, Elsevier, vol. 115(P3), pages 1701-1709.

    More about this item

    JEL classification:

    • D02 - Microeconomics - - General - - - Institutions: Design, Formation, Operations, and Impact
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:vfsc13:79944. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: http://edirc.repec.org/data/vfsocea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.