IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v135y2014icp600-615.html
   My bibliography  Save this article

Incorporating flexibility requirements into long-term energy system models – A case study on high levels of renewable electricity penetration in Ireland

Author

Listed:
  • Welsch, Manuel
  • Deane, Paul
  • Howells, Mark
  • Ó Gallachóir, Brian
  • Rogan, Fionn
  • Bazilian, Morgan
  • Rogner, Hans-Holger

Abstract

Efforts to meet climate change mitigation and energy security targets spur investments in variable renewable energy sources. Their implications for the operation of power plants are frequently investigated drawing on unit commitment and dispatch models. However, the temporal granularity and operational detail these models consider is commonly omitted in the broader family of long-term energy system models. To compensate this short-coming, these two types of tools have sometimes been ‘soft-linked’ and harmonised for limited simulation years. This paper assesses an alternative approach. We examine an extended version of an open source energy system model (OSeMOSYS), which is able to capture operating reserve and related investment requirements within a single tool. The implications of these model extensions are quantified through comparison with an Irish case study. That case study examined the effects of linking a long-term energy system model (TIMES) with a unit commitment and dispatch model (PLEXOS). It analysed the year 2020 in detail, applying a yearly temporal resolution that is over 700 times higher than in OSeMOSYS. Without increasing temporal resolution (and computational burden) we show that results of the enhanced OSeMOSYS model converge to results of TIMES and PLEXOS: Investment mismatches decrease from 21.4% to 5.0%. The OSeMOSYS analysis was then extended to 2050 to assess the implications of short-term variability on future capacity investment decisions. When variability was ignored, power system investments in 2050 were found to be 14.3% lower. This might imply that energy policies derived from such long-term models – of which there are many – may underestimate the costs of introducing variable renewables and thus meeting climate change or energy security targets.

Suggested Citation

  • Welsch, Manuel & Deane, Paul & Howells, Mark & Ó Gallachóir, Brian & Rogan, Fionn & Bazilian, Morgan & Rogner, Hans-Holger, 2014. "Incorporating flexibility requirements into long-term energy system models – A case study on high levels of renewable electricity penetration in Ireland," Applied Energy, Elsevier, vol. 135(C), pages 600-615.
  • Handle: RePEc:eee:appene:v:135:y:2014:i:c:p:600-615
    DOI: 10.1016/j.apenergy.2014.08.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914008836
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.08.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernandes, Camila & Frías, Pablo & Latorre, Jesús M., 2012. "Impact of vehicle-to-grid on power system operation costs: The Spanish case study," Applied Energy, Elsevier, vol. 96(C), pages 194-202.
    2. Voorspools, Kris R. & D'haeseleer, William D., 2006. "An analytical formula for the capacity credit of wind power," Renewable Energy, Elsevier, vol. 31(1), pages 45-54.
    3. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    4. Deane, J.P. & Chiodi, Alessandro & Gargiulo, Maurizio & Ó Gallachóir, Brian P., 2012. "Soft-linking of a power systems model to an energy systems model," Energy, Elsevier, vol. 42(1), pages 303-312.
    5. De Jonghe, Cedric & Delarue, Erik & Belmans, Ronnie & D'haeseleer, William, 2011. "Determining optimal electricity technology mix with high level of wind power penetration," Applied Energy, Elsevier, vol. 88(6), pages 2231-2238, June.
    6. Pina, André & Silva, Carlos A. & Ferrão, Paulo, 2013. "High-resolution modeling framework for planning electricity systems with high penetration of renewables," Applied Energy, Elsevier, vol. 112(C), pages 215-223.
    7. Richard Loulou & Maryse Labriet, 2008. "ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure," Computational Management Science, Springer, vol. 5(1), pages 7-40, February.
    8. Krajačić, Goran & Lončar, Dražen & Duić, Neven & Zeljko, Mladen & Lacal Arántegui, Roberto & Loisel, Rodica & Raguzin, Igor, 2013. "Analysis of financial mechanisms in support to new pumped hydropower storage projects in Croatia," Applied Energy, Elsevier, vol. 101(C), pages 161-171.
    9. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2011. "The first step towards a 100% renewable energy-system for Ireland," Applied Energy, Elsevier, vol. 88(2), pages 502-507, February.
    10. Richard Loulou, 2008. "ETSAP-TIAM: the TIMES integrated assessment model. part II: mathematical formulation," Computational Management Science, Springer, vol. 5(1), pages 41-66, February.
    11. Chiodi, Alessandro & Gargiulo, Maurizio & Rogan, Fionn & Deane, J.P. & Lavigne, Denis & Rout, Ullash K. & Ó Gallachóir, Brian P., 2013. "Modelling the impacts of challenging 2050 European climate mitigation targets on Ireland’s energy system," Energy Policy, Elsevier, vol. 53(C), pages 169-189.
    12. Chang, Martin K. & Eichman, Joshua D. & Mueller, Fabian & Samuelsen, Scott, 2013. "Buffering intermittent renewable power with hydroelectric generation: A case study in California," Applied Energy, Elsevier, vol. 112(C), pages 1-11.
    13. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "An integrated model for long-term power generation planning toward future smart electricity systems," Applied Energy, Elsevier, vol. 112(C), pages 1424-1437.
    14. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    15. Howells, Mark & Rogner, Holger & Strachan, Neil & Heaps, Charles & Huntington, Hillard & Kypreos, Socrates & Hughes, Alison & Silveira, Semida & DeCarolis, Joe & Bazillian, Morgan & Roehrl, Alexander, 2011. "OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development," Energy Policy, Elsevier, vol. 39(10), pages 5850-5870, October.
    16. Welsch, M. & Howells, M. & Bazilian, M. & DeCarolis, J.F. & Hermann, S. & Rogner, H.H., 2012. "Modelling elements of Smart Grids – Enhancing the OSeMOSYS (Open Source Energy Modelling System) code," Energy, Elsevier, vol. 46(1), pages 337-350.
    17. Dallinger, David & Gerda, Schubert & Wietschel, Martin, 2013. "Integration of intermittent renewable power supply using grid-connected vehicles – A 2030 case study for California and Germany," Applied Energy, Elsevier, vol. 104(C), pages 666-682.
    18. Foley, Aoife & Tyther, Barry & Calnan, Patrick & Ó Gallachóir, Brian, 2013. "Impacts of Electric Vehicle charging under electricity market operations," Applied Energy, Elsevier, vol. 101(C), pages 93-102.
    19. Ludig, Sylvie & Haller, Markus & Schmid, Eva & Bauer, Nico, 2011. "Fluctuating renewables in a long-term climate change mitigation strategy," Energy, Elsevier, vol. 36(11), pages 6674-6685.
    20. DeCarolis, Joseph F. & Hunter, Kevin & Sreepathi, Sarat, 2012. "The case for repeatable analysis with energy economy optimization models," Energy Economics, Elsevier, vol. 34(6), pages 1845-1853.
    21. Foley, A.M. & Ó Gallachóir, B.P. & Hur, J. & Baldick, R. & McKeogh, E.J., 2010. "A strategic review of electricity systems models," Energy, Elsevier, vol. 35(12), pages 4522-4530.
    22. Welsch, Manuel & Bazilian, Morgan & Howells, Mark & Divan, Deepak & Elzinga, David & Strbac, Goran & Jones, Lawrence & Keane, Andrew & Gielen, Dolf & Balijepalli, V.S.K. Murthy & Brew-Hammond, Abeeku , 2013. "Smart and Just Grids for sub-Saharan Africa: Exploring options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 336-352.
    23. Möst, Dominik & Fichtner, Wolf, 2010. "Renewable energy sources in European energy supply and interactions with emission trading," Energy Policy, Elsevier, vol. 38(6), pages 2898-2910, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    2. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    3. Amorim, Filipa & Pina, André & Gerbelová, Hana & Pereira da Silva, Patrícia & Vasconcelos, Jorge & Martins, Victor, 2014. "Electricity decarbonisation pathways for 2050 in Portugal: A TIMES (The Integrated MARKAL-EFOM System) based approach in closed versus open systems modelling," Energy, Elsevier, vol. 69(C), pages 104-112.
    4. Welsch, M. & Howells, M. & Bazilian, M. & DeCarolis, J.F. & Hermann, S. & Rogner, H.H., 2012. "Modelling elements of Smart Grids – Enhancing the OSeMOSYS (Open Source Energy Modelling System) code," Energy, Elsevier, vol. 46(1), pages 337-350.
    5. Koltsaklis, Nikolaos E. & Georgiadis, Michael C., 2015. "A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints," Applied Energy, Elsevier, vol. 158(C), pages 310-331.
    6. Borasio, M. & Moret, S., 2022. "Deep decarbonisation of regional energy systems: A novel modelling approach and its application to the Italian energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    7. Poncelet, Kris & Delarue, Erik & Six, Daan & Duerinck, Jan & D’haeseleer, William, 2016. "Impact of the level of temporal and operational detail in energy-system planning models," Applied Energy, Elsevier, vol. 162(C), pages 631-643.
    8. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
    10. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    11. Trutnevyte, Evelina, 2016. "Does cost optimization approximate the real-world energy transition?," Energy, Elsevier, vol. 106(C), pages 182-193.
    12. Koppelaar, Rembrandt H.E.M. & Keirstead, James & Shah, Nilay & Woods, Jeremy, 2016. "A review of policy analysis purpose and capabilities of electricity system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1531-1544.
    13. Collins, Seán & Deane, John Paul & Poncelet, Kris & Panos, Evangelos & Pietzcker, Robert C. & Delarue, Erik & Ó Gallachóir, Brian Pádraig, 2017. "Integrating short term variations of the power system into integrated energy system models: A methodological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 839-856.
    14. Parrado-Hernando, Gonzalo & Herc, Luka & Pfeifer, Antun & Capellán-Perez, Iñigo & Batas Bjelić, Ilija & Duić, Neven & Frechoso-Escudero, Fernando & Miguel González, Luis Javier & Gjorgievski, Vladimir, 2022. "Capturing features of hourly-resolution energy models through statistical annual indicators," Renewable Energy, Elsevier, vol. 197(C), pages 1192-1223.
    15. Martínez-Gordón, R. & Morales-España, G. & Sijm, J. & Faaij, A.P.C., 2021. "A review of the role of spatial resolution in energy systems modelling: Lessons learned and applicability to the North Sea region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    16. Seljom, Pernille & Tomasgard, Asgeir, 2017. "The impact of policy actions and future energy prices on the cost-optimal development of the energy system in Norway and Sweden," Energy Policy, Elsevier, vol. 106(C), pages 85-102.
    17. Clemens Gerbaulet & Casimir Lorenz, 2017. "dynELMOD: A Dynamic Investment and Dispatch Model for the Future European Electricity Market," Data Documentation 88, DIW Berlin, German Institute for Economic Research.
    18. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    19. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    20. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:135:y:2014:i:c:p:600-615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.