IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v244y2025ics0960148125002897.html
   My bibliography  Save this article

Customized open source renewable energy models validated through PHIL lab experiments

Author

Listed:
  • Fachini, Fernando
  • Chang, Hao
  • Bogodorova, Tetiana
  • Vanfretti, Luigi

Abstract

Energy models for power systems require ongoing updates to reflect advancements in equipment technology and the increasing complexity of power electronic devices. This study utilizes a Power Hardware-in-the-Loop (PHIL) experimental setup to validate custom photovoltaic (PV) inverter models, aiming to enhance and expedite the development of advanced renewable energy models. The research compares the performance of a physical inverter with generic Renewable Energy Source (RES) models recommended by the Western Electricity Coordinating Council (WECC). As inverter-based renewable energy sources become more prevalent in modern electrical grids, it is crucial that dynamic models accurately represent their real-world behavior. Accurate models improve our understanding of these energy resources and their interactions with the grid. The proposed model enhancements are designed to better reflect real inverter performance, based on insights from PHIL experiments. These models are developed using the open source Modelica language and the OpenIPSL Modelica Library, allowing integration across various simulation tools without re-implementation. The paper concludes with a thorough assessment, comparing the enhanced models with PHIL experiments on a real PV inverter in a controlled laboratory setting. The study provides the enhanced WECC RES models and validation data as open source resources, facilitating further research and development.

Suggested Citation

  • Fachini, Fernando & Chang, Hao & Bogodorova, Tetiana & Vanfretti, Luigi, 2025. "Customized open source renewable energy models validated through PHIL lab experiments," Renewable Energy, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125002897
    DOI: 10.1016/j.renene.2025.122627
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125002897
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122627?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nien-Che Yang & Chun-Wei Hsu & Abhilash Sen, 2023. "Parameter Tuning for WECC Generic Photovoltaic System Models Using Latin Hypercube Sampling and Pareto Optimality," Mathematics, MDPI, vol. 11(12), pages 1-26, June.
    2. Ram Machlev & Zohar Batushansky & Sachin Soni & Vladimir Chadliev & Juri Belikov & Yoash Levron, 2020. "Verification of Utility-Scale Solar Photovoltaic Plant Models for Dynamic Studies of Transmission Networks," Energies, MDPI, vol. 13(12), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olga Poliak & Doron Shmilovitz, 2023. "Power Reserve from Photovoltaics for Improving Frequency Response in the Isolated System," Energies, MDPI, vol. 16(8), pages 1-20, April.
    2. Nien-Che Yang & Chun-Wei Hsu & Abhilash Sen, 2023. "Parameter Tuning for WECC Generic Photovoltaic System Models Using Latin Hypercube Sampling and Pareto Optimality," Mathematics, MDPI, vol. 11(12), pages 1-26, June.
    3. Tariq Muneer & Mehreen Saleem Gul & Marzia Alam, 2022. "Modelling of a Large Solar PV Facility: England’s Mallard Solar Farm Case Study," Energies, MDPI, vol. 15(22), pages 1-17, November.
    4. Evgeny Solomin & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy & Anton Kovalyov & Ramyashree Maddappa Srinivasa, 2021. "The Comparison of Solar-Powered Hydrogen Closed-Cycle System Capacities for Selected Locations," Energies, MDPI, vol. 14(9), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125002897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.